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Abstract

After abandoning an attempt to build our own gasoline-powered automated outdoor vehicle
in 1995, we purchased two M68332-controlled wheelchairs for indoor and outdoor mobile
robotics research. Much of the first year has been spent on various infrastructure projects,
several of which are described here. At this writing we are beginning to be in a position
to do nontrivial applications and research using these platforms. This compendium of facts
and experiences is meant to be useful in getting to know the organization and capabilities
of our mobile robots. We first cover the basic hardware and the serial protocol used to
communicate between the main computing engine and the microcontroller responsible for
sensor management, motor control, and low-level sensori-motor control loops. We describe
the interface to the video digitizer, a low-level obstacle avoidance routine, and a general
software organization for a control architecture based on video streams. Dynamic nonholo-
nomic models and a virtual environment for debugging and experimenting with them are
described next, followed up by a visual servoing application that uses “engineered vision”
and special assumptions.

This material is based on work supported by the Luso—American Foundation, Calouste Gulbenkian Foun-
dation, JNICT, CAPES process BEX 0591/95-5, NSF IIP grant CDA-94-01142, DARPA DURIP MDA972-
92-J-1012, NSF Research Instrumentation IRI-9202816, and DARPA VSAM contract DAAB07-97-C-J027.
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Figure 1: One of the automated wheelchairs.

1 Hardware

Our twin Vector Mobility wheelchairs are modified by the Kiss Institute of Practical Robotics
(see http://www.kipr.org/) with an Onset M68332 micro-controller, a sonar range sen-
sor, bump sensor, odometry on each wheel, and a large complement of IR proximity sensors.
Commands can change the velocity or the steering direction of the chair, though the indi-
vidual wheels are not individually controllable (the Onset’s output is further interpreted by
a proprietary controller that generates PCM signals to the two wheel motors given output
either from the microcontroller or from a joystick manual control) (Fig. 1).

Among other hardware modifications, we added a twin-Pentium computer from Real
World Interfaces (RWI) (see http://www.rwii.com), to run Linux, fitted heavier batteries
(DieHard Marine Starting Deep Cycle), enhanced RWI’s DC-to-DC converter with multiple
5V and 12V output jacks, added a Matrox Meteor digitizer and two sorts of wireless ethernet
connectivity (Fig. 2). We have upgraded the odometry of one chair to use a bi-directional
shaft encoder (Model 230 from Encoder Products Co., with a US Digital Corp LS7083
encoder-to-counter interface chip).
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from Newton Labs (see http://www.newtonlabs.com) will be included in the near future,

Figure 2: Block diagram of wheelchair hardware complement.

and both the wheelchairs will have Aironet wireless ethernet bridges, with one chair being

connected to the department network.



2 The Serial Protocol

2.1 Goals

Our autonomous wheelchairs have a powerful twin Pentium Linux processor for high-level
reasoning, vision processing, communications, and generally, computation that does not
involve wheelchair control or sensor reading. The serial protocol provides a standard C
library interface for control of the wheelchairs from the Linux computer. Each wheelchair
is equipped with a TinMan supplementary wheelchair controller from the KISS Institute of
Practical Robotics (KIPR). The TinMan controller uses a 32-bit Motorola MC68332 proces-
sor for motor control and sensor monitoring. This controller is suitable for simple navigation
tasks such as obstacle avoidance. More complex tasks such as visual navigation, however,
require more computational power and access to a larger suite of sensors. This environment
is provided by the dual-Pentium Linux box strapped to each wheelchair. The serial protocol
is an interface that gives complex computational tasks running on Linux access to the low
level motor functions and sensor readings brokered by the TinMan controller.

The serial protocol is meant to support various forms of control functionality. ARC
allows multiplexing of several abstract serial “streams” on one serial line, and we envisioned
streams with the following characteristics. One should flow “down” from Linux to Micro-
controller carrying commands and inquiries. Commands should be of two varieties. First,
for feedback control and fast response, we need a synchronous stream providing basically
remote procedure calls. The caller (Linux process) is suspended until the callee responds.
Second, since it is possible to put rather serious functionality into the ARC microcomputer,
we envisioned commands of the “Go do this complicated job while I think about something
else. Tell me how it came out” variety. Possibly the programs running on ARC would have
something interesting to impart, or to ask of the Linux side: an “upcall”. Thus we need
an asynchronous stream for arbitrary communication from autonomous ARC processes.
An error stream is like the asynchronous stream but gets higher priority and, and sensor
readings are messages that presumably always have the same format and should be sent at
some constant rate.

These abstractions were in our minds as we developed the serial protocal that is described
in more detail below.

2.2 ARC

The TinMan controller came with a copy of the ARC C development environment for
programming the MC68332 processor. ARC was created by Newton Research Labs for
programming 32-bit embedded systems. It consists of a suite of compilation tools, including
the C compiler arcc and a serial interaction program, arc, for downloading programs to
the MC68332.

ARC can be installed on Linux, SunOS, Solaris or Irix workstations. Currently, ARC
is installed on the Linux box on each wheelchair. Through the remainder of the ARC
discussion, the Linux box will be referred to as the host. The MC68332 processor will be
referred to as the target.



The serial protocol is implemented on the target using ARC. ARC supports multi-
tasking and multi-streamed serial I/O, making it a powerful and flexible environment for
implementing a subsumption architecture. arcc uses the GNU C compilation backend, so
it is not only a powerful but also a familiar environment for the members of our research
team.

More information about ARC, including the User’s manual, is available online:

http://www.newtonlabs.com/arc/

Parallel programming

ARC provides end users with a fine degree of control over the time given to each process.
The environment supports up to 32 simultaneous processes. Processes are scheduled “round
robin” — the multitasker iterates through the process table and context switches when a
process’s allocated time expires.

Processes are created using the start_process() function with the syntax

pid start_process(char *process_name, void (*)function,
int stack_size, int time_slice)

where time_slice is measured in scheduler ticks. The granularity of each tick is determined
by the programmable scheduling interrupt period. The interrupt period is currently set to
976,000 nanoseconds, which yields 1024 scheduler ticks per second.

The serial protocol code relies heavily on two functions to control process scheduling.
The defer () function causes the current process to give up the rest of its allocated scheduler
ticks. The hog_processor() function gives the current process 256 more scheduler ticks.
The hog_processor () function should be used with care. If a process uses all 256 allocated
scheduler ticks, the frequency of each cycle through the process table is reduced to 4 Hz.
This frequency may be too low for real time control of the wheelchairs.

ARC also provides semaphores, or locks, to guarantee mutual exclusion for critical
sections of code. The lock() function has the syntax void lock(lock_t *flag). This
function will defer, or spin, until the lock is released by another process using the unlock()
function with the syntax void unlock(lock t *flag).

Multi-streamed Serial I/O

Our method for handling multi-streamed I/0 is based on a design and sample code supplied
by Anne Wright of Newton Research Labs. The protocol can be parsed by a two-state finite
state machine, shown in Figure 3). The protocol uses [0xfe]' as the stream break character.

All characters received in State 0 are passed on to the current input stream. A stream
break, [Oxfe], results in a transition to State 1.

'"Hexadecimal numbers in brackets represent bytes with non printable values



Oxfe

State 0 State 1
(any character)

Figure 3: Multi-streamed Serial Protocol FSM

process description

dispatch Serial I/O, process commands from host
driver Motor control, obstacle avoidance
read_sensors Update infrared & bump sensor readings
encoders Update shaft encoder readings

sonars Update sonar readings
send_sensor_packets | Send sensor packets to host

Table 1: Description of process functionality

In State 1, the last received character was a stream break, but not the character before
that. This state transitions back to State 0 on any input, and the character just received is
interpreted as follows:

e The number of the new input stream if it is in range
o A literal with the same value as the stream break

e An error (out of range, not a stream break)

Data can be sent to a particular stream by prefacing it with a stream break followed by
the stream number. For example, to send “foo” to stream 5, you would send:

[0xfe] [0x05]foo

2.3 Architecture: ARC

The foundation for the target-side serial protocol is a collection of functions that KIPR in-
cluded with the TinMan robots. These functions provide a clean interface to the wheelchair
sensors, as well as some rudimentary navigational functions. The TinMan source code is
distributed across the files dio.c, diotpu.c (digital I/O and Timer Processor Unit func-
tions), encoders.c, sonar.c, all of which are #include’d from tm.c The TinMan code
can be accessed by placing a #include "tm.c" statement in a source file, or by linking
tm.o into a program.

When running, the protocol uses six separate processes. The functionality of each
process is summarized in Table 1, and the location of the source code for the corresponding
function is listed in Table 2.



process location

dispatch dispatch.c: main()

driver dispatch.c: driver()

read_sensors tm.c: TM_read_sensors ()
encoders encoders.c: encodersmain()
sonars sonar.c: sonars_main()
send_sensor_packets | dispatch.c: send sensor_packets()

Table 2: Location of source for each process

Processing I/0

The serial protocol currently multiplexes five streams on the serial line. One stream (input)
is reserved for data sent from host to target, the remaining four streams (sensor, error,
synch and asynch) are reserved for sending data from target to host.

The input stream relays turning, driving and state control commands. Sensor packets
are sent at fixed intervals across the sensor stream, and debugging information is sent
across the error stream. The synch and asynch streams are used to send responses from
synchronous and asynchronous commands, respectively. Figure 4 illustrates which processes
access each of the streams.

The dispatch process is responsible for receiving and processing commands from the
host. A valid command consists of a one byte identifier, possibly followed by additional
arguments. See section 2.7 for details about creating new commands. The file messages.his
used by the serial protocol implementation on both the host and the target. The pseudocode
in Figure 5 illustrates how dispatch processes commands. A command read from the serial
line is used to update a global variable. The global variable is monitored and acted upon
by another process, such as driver.

While it would be possible for dispatch to execute all of the commands itself, delegating
this task to other processes gives the programmer more control over the amount of time
given to each component of the serial protocol. This degree of control is important if the
protocol is to be used for real time control of the wheelchair.

Sensor readings

The wheelchair sensor readings are continuously updated by three separate ARC processes
- encoders, sonars and read_sensors. The latter process updates the infrared sensors,
bump sensors, and the position of the joystick. Each of these processes writes the updated
sensor readings to global variables that can be read by other processes.

The updated readings are sent as sensor packets across the sensor stream. These readings
can be accessed by C programs running on Linux by using the sensor library, described in
section 2.5. The sensor packet format is shown in Table 3.

Sensor packets are sent at a fixed frequency, which can be modified by changing the
#define’d constant
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[* —==—= Global variables —----- x/
int drive_speed, turn_speed, avoidance;
lock_t serial_line;

read_cmd:
command = read(command stream, character);
lock(&serial_line);

switch (command) {
case DRIVE_TACIT: case DRIVE_ACK:
drive_speed = read(command stream, character);
if (command == DRIVE_ACK)
write(synch stream, ATTN); /* --- Synchronous response */
goto end_command_interp;

case TURN_TACIT: case TURN_ACK:
turn_speed = read(command stream, character);

case AVOID_ON:
write(error stream, debugging message);
avoidance = 0;
goto end_command_interp;

}

end_command_interp:
unlock(&serial_line);
goto read_cmd;

Figure 5: Pseudocode for the ARC process, dispatch

10



Sensor Packet Format

bits 0-31 32-63 (int) | 64-95 (int) | 96-127 (int) | 128-159 (int)
data || sensorbits sonar left_encoder | right_encoder thetime
Composition of sensorbits
bits 0-15 16-27 28 29 30-31
data | Unused | Infrared | Left bump | Right bump | Unused

Table 3: Sensor Packet Format

SENSOR_PACKET_FREQUENCY in the file dispatch.c Pseudocode for the flow control
implemented in send sensor_packets is shown in Figure 6.

Starting the Serial Protocol

What follows are some brief instructions and examples illustrating how to use ARC to
compile and run the serial protocol. It is not intended as a comprehensive guide to the
serial interaction program, arc, or the ARC C compiler, arcc. Please refer to Chapters 3
and 4 of the ARC User’s manual for detailed information on these two programs.

The serial interaction program is started by typing arc at the host’s command line.
The named_socket_server program will be started if it is not already running and no other
program is offering equivalent services. A copyright notice and license agreement will be
displayed, followed by output similar to this:

Port /dev/cual, baud 38400
Terminal port # 8788

Term socket = <fd 4>

arc>

The ramload command can be used from the arc prompt to download programs to
the target. This command can accept either a source file or a precompiled binary as an
argument. If ramload is invoked on a source file, it will compile this file and then download
the resultant binary to the target processor. The file dispatch.c merges in all of the source
for the serial protocol, thanks to liberal usage of the #include pragma to load C source
files.

The following session output illustrates this process:

arc> ramload dispatch.c

Running arcc dispatch.c

arcc version 1.4

Input file: dispatch.c, output file:
ttaleboot.976, addr 0x1c8000)
set_checksum version 1.4

dispatch (kernel=

11



/* --- Compute sensor_packet_delay from the constant
—-—- SENSOR_PACKET_FREQUENCY and the duration of
-—- each scheduler tick. =*/

while (1) {
wait_for_delay_period:

dt = time() - thetime;

if (dt < sensor_packet_delay) {
defer();
goto wait_for_delay_period;

}
lock(&serial_line);

thetime = time();
compute sensorbits;

write(sensor, ATTN);

write(sensor, sensorbits);
write(sensor, sonar);

write(sensor, left_encoder_ticks);
write{sensor, right_encoder_ticks);
write(sensor, thetime);

unlock(&serial_line);

Figure 6: Pseudocode for the ARC process, send sensor_packets

12



Adding dependencies: dispatch 0, ttaleboot.976 54d3862a
dispatch checksum changed from 0 to b40449d0
Done

At this point in the process, the binary file dispatch has just been compiled from the
dispatch.c source file. It is also possible to compile dispatch from a UNIX command
prompt, using the syntax arcc dispatch.c The output below shows the binary file being
downloaded to the target. If the binary file already exists and you want to avoid recom-
pilation time, simply type ramload dispatch at the arc prompt. The rest of the output
from the ramload command is listed below.

in download_aout_rest

Download dispatch (a.out file, gdb protocol)

Reading symbol data from dispatch ... (36 symbols not
classified)

Read 25118 symbols (of 25118 symbols total)

Downloading code (0x1c8000-0Oxlcac8f)..........c.cvviuunn..

Downloading global initializers (Oxlcaf3c-Oxlcafbb).

arc>

Once a new program has been downloaded to the target, all user processes stop. To
start the serial protocol, type run dispatch at the arc prompt. Alternatively, you can
push the red RESET button. The main() function in dispatch.c will start all of the target
side serial protocol processes. After exiting the serial interaction program, the host and
target can start communication. 2

2.4 Architecture: Linux

The Linux-side serial protocol is started by running three programs - serial, command and
dispatch. The source files used to create these programs are shown in Table 4. These
programs can be thought of as daemons. They are intended to run continually in the
background and interface with programs that use the motor or sensor library. serial is
responsible for I/O across the serial line. Once this program has initialized, it will write all
output from the command program to the serial line, and will send all output from the serial
line to the dispatch program. serial does not examine any of the data it is shuffling back
and forth. The command program is responsible for connecting to programs that utilize the
motor library, and relaying the commands that they send to serial. dispatch reads the
data that serial sends it, checks the stream number, and routes the data to the appropriate
stream handler process.

*Newton Labs uses some code internally that permits the arc serial interaction program and user programs
to share the serial line. According to Anne Wright, this code has a “messy interface,” and using both
programs simultaneously increases latency.

13



source file(s) purpose

arc_io.c,h Multi-streamed I/0O

command.c Communicates with motor library programs,
serial and dispatch

dispatch.c Routes streamed I/O to appropriate handler

handlers.c,h | Process output from dispatch, write to
shared memory if necessary
messages.h Definitions for serial protocol commands
motorlib.c,h | Motor library implementation
sensorlib.c,h | Sensor library implementation
serial.c Reads, writes to serial line

Table 4: Linux source files

Initialization

1. Start serial from a prompt. It will open the serial line for communication, and
then listens for a connection from command on the SERIALLISTENSOCK socket.
(SERIALLISTENSOCK and the other named sockets are #define’d in messages.h

2. Start command from a prompt. It will connect to serial, and then listen for a con-
nection from the synchronous stream handler on SYNCHSOCK. (stream handlers are
explained in greater detail below)

3. After serial has connected to command, it will listen for a connection from dispatch
on SERTALTALKSOCK.

4. Start dispatch from a prompt. It will connect to serial, and then fork() off the
four stream handlers. Data sent across the serial line by ARC, such as sensor packets,
is now being processed.

These steps are only executed the first time that the serial protocol is initialized.

Motor Library Connection Attempts

The following steps are executed each time a motor library program attempts to connect to
the serial program. In the explanation below, references are made to the numbered steps
illustrated in Figure 7.

1. The main() function in command waits for a motor library program to attempt to
connect to MOTORSOCK (1).

2. When a connection is made (2), command:main() checks to see if the semaphore
controlling access to the motors is set. If the semaphore is set, the connection attempt
is rejected. If the semaphore was free, command:main() sets it and fork()’s. The

14



i motor library 1 G} motor library
! |
! program | Connection program

| from
! Y |
! @,” N ! SYNCH handler
. @ 1 on SYNCHSOCKET

\
\

|
COMMAND: | | ® l COMMAND:

|

|

command() command()

D7 ! COMMAND:
@, | main()
_______ |
|
SERIAL | SERIAL

Figure 7: Command connection process

child process will execute the command() function (3), and will be referred to as
command :command (). It is responsible for communicating with the motor library
program (4). The parent process, command:main(), continues to listen for connection
attempts on MOTORSOCK (6).

. command : command () connects to the synchronous stream handler on the SYNCH-
SOCK socket.

. command : command () tests its connection to the synchronous stream handler by writ-
ing the synchronous command INIT_CMD (#define’d in messages.h) to serial.
command : command () then listens for an INIT_CMD on SYNCHSOCK.

. serial sends the INIT_CMD across the serial line to the ARC-side serial protocol.
The ARC-side serial protocol writes an INIT_CMD to the synchronous stream of
the serial line. serial receives this character, and sends it to dispatch, which in
turn sends it to the synchronous stream handler. This stream handler writes the
INIT_CMD to SYNCHSOCK, where it is read by command. This pathway between
processes is used by all synchronous commands.

. The motor library program is now successfully connected to the serial protocol. This
state is illustrated in Figure 8.

. Commands are relayed until the motor library program disconnects from the serial
protocol.

15



The Serial Protocol Architecture: ProcessView

ERROR SENSOR
library library
Shared Shared MOTOR
memory memory library
ERROR SENSOR
ASYNCH handler handler

handler Mot

) ; Synch otor
ipe
pipe pip fipe SYNCH | ookt socket
handler
( M N
DISPATCH COMMAND

J

socket P

SERIAL

seria

connection

CHAIR

ﬁnmand
socket

Figure 8: Serial protocol innards: Linux side
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2.5 The C Programming Interface

The C programming interface to the serial protocol is implemented as a pair of libraries:
one to control the chair’s motors and one to read its sensors. Each of these libraries, in turn,
communicates with the collection of daemons that run behind the scenes; the daemons do
the dirty work of controlling the serial line, maintaining the shared memory segment for
sensor readings, and so on. The purpose of the libraries is to hide implementation details
from the programmer and allow a simple, controllable C interface to the wheelchairs.

To use the serial protocol library (which includes both the motor and sensor libraries),
link with 1libchair.a. Include files motor.h for the motor library and sensor.h for the
sensor library. (Include and library files reside in the /u/mobile directory).

All library functions work in basically the same way: first, the library is initiated via a
call to the relevant attach() function; then, functions in that library are called by the user;
and finally, the library is closed via the relevant detach() command. Only one user process
may connect to the motor library at a given time. As many users as desired may attach to
the sensor library.

The motor library

int motor_attach(): Initiates the motor-handling part of the library, and prepares the
wheelchair motors to accept drive and turn commands. On success returns 0; on failure, -1.

int TM.drive(int speed): Sets the motors to a speed in the range [10, —10]. If speed
is out of that range, TM_ drive() truncates it automatically. TM drive () returns the speed
to which the motors are finally set, or ERROR on error.

int TM_drive_asynch(int speed): An asynchronous version of the above command.
Speed is still in the range [10, —10]. TM_drive_asynch, however, returns no value.

int TM_turn(int speed): Sets the turn speed to a value in the range [10,—10]. If
speed is out of that range, TM_turn() truncates it automatically. TM_turn returns the value
to which the turn speed is finally set, or ERROR on error.

int TM_turn asynch(int speed): An asynchronous version of the above command.
Speed is still in the range [10, —10]. TM_turn_asynch, however, returns no value.

int TM_avoid(short f): Controls obstacle avoidance on the chair. When obstacle
avoidance is active, the chair filters all motor commands through Amit Singhal’s routine
designed to keep the chair from colliding with objects. [FOLLOWING PARAGRAPH
SHOULD PROBABLY BE REPLACED WITH A REFERENCE TO AMIT’S SECTION
OF THE PAPER] If an obstacle is in front of the chair, a TM_.drive command will be
translated into TM_turn commands until the obstacle is cleared.

The obstacle avoidance routine can not be counted on to keep the chair from colliding
with all of the objects in the software lab. Because it relies on the IR sensors, which are

17



placed low on the chair chassis, it can not detect the presence of desks, chairs, and other
high obstacles. The IR is also fooled by dark metal surfaces like the supplies cabinet in the
mail room.

Passing a non-zero value to TM_avoid turns on obstacle avoidance; a zero turns it off.

int TM_control(short f): Controls feedback-driven course correction for drive com-
mands. When course correction is active, the chair filters all motor commands through Chris
Eveland’s routine designed to keep it as close as possible to the last course set. This routine
checks the value of the encoder on each wheel of the wheelchair to determine whether the
chair is moving in the correct direction; if not, it modifies the motor commands to better
reflect the requested command.

Passing a non-zero value to TM_control turns on course correction; a zero turns it off.

int TM_cycle_time(void): Returns the value of the ARC function swap_cycle_time().
This value, according to the ARC manual, is "the average number of scheduler ticks that
it is taking to completely cycle through the process table. This number will range from 0
(if everyone is deferring) to the sum of the number of ticks allotted to all the processes (if
no one is deferring). This number allows you to have an idea of the processor load.”

int motor_detach(): Disconnect from motor library, deactivate motors and reset com-
munications. Returns 0 on success, -1 on failure.

The sensor library

int sensor_attach(): Initiates the sensor-handling part of the library. This function
must be called before any of the sensor-accessing functions are called. Once sensors are
initialized, they will be updated asynchronously several times per second. The function
sensor_attach() returns 0 on success; -1 on failure.

int *TM_ir(): Reads the IR sensors. Returns a 12-element array of ints, one for each
IR sensor, in the order in which their inputs are numbered. So the IR sensor in input jack 1
maps to element 0 of the return array, IR 2 maps to element 1, and so on. The call should
follow the following form:

int *irs = TM_ir();

Memory for the return array is allocated by the TM_ir function, but must be freed by the
calling function.

int *TM bump(): Reads the bump sensors. Returns a 2-element array of ints, one for
each bump sensor. The left bump sensor maps to array element 0; the right to array element
1. The call should follow the following form:

int *bump = TM_bump() ;
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Memory for the return array is allocated by the TM_bump function, but must be freed by the
calling function.

int *TM_encoder () ;: Reads the shaft encoders. Returns a 2-element array of ints, one
for each wheel. The left encoder maps to array element 0; the right to array element 1. The
call should follow the following form:

int *enc = TM_encoder();

Memory for the return array is allocated by the TM_encoder function, but must be freed by
the calling function.

int TM_timestamp(): Returns the value of the ARC function time(), which is the
number of scheduler ticks since the microcontroller was last power cycled.

int sensor_detach(): Disconnect from the sensor library. Returns 0 on success, -1 on
failure.

2.6 Timing and Bandwidth Issues

In an earlier version of the serial protocol, there were problems with real time control of
the chair from the Linux box. The problem arose when more control signals were generated
than the serial line and the message decoding on the 332 could handle. This mismatch
caused a buffer to fill up, introducing latency into the command path.

This was a serious problem when several seconds worth of commands had been stored
in the buffer. At this point, if a stop command was given, all of the drive commands
issued before it that were still in the buffer would be executed before this stop request was
processed. Usually this had catastrophic results.

Asynchronous Command Flow Control

To address this, software flow control for asynchronous turn and drive commands was added
to the file command.c The same method is used for both types of commands, however only
the asynchronous turn command case is described here. Pseudocode for the flow control is
provided in Figure 9.

The frequency at which asynchronous motor commands can be sent is specified in Hertz
by the constant TACIT_.COMMAND_FREQUENCY #define’d in command.c A delay pe-
riod between motor commands is calculated from this constant. When an asynchronous
motor command is received, command modifies a global turn variable. Then, it checks to
see if an amount of time greater than the delay period has passed since the last command.
If the delay period has been exceeded, the turn command will be sent to serial. If not,
command will continue to read commands until the delay period has been exceeded, and
then only the most recent turn command will be issued. An asynchronous turn command
will never be issued unless the turning speed has changed since the last command that was
issued.
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while (1) {

/* -—- Non-blocking I/0 -—- */
command = read (MOTORSOCK, character);

if (command) {

/* —-—— Process commands —-- */
switch(command) {

case TURN_TACIT:
speed = read (MOTORSOCK, character);
pending_turn = TRUE;
pending_turn_speed = speed;
break;

case DRIVE_TACIT:

current_time = time();

if (pending_turn &&
(current_time > next_packet_time) &&
(pending_turn_speed != current_turn_speed)) {
pending_turn = FALSE;
next_packet_time = current_time + delay;
current_turn_speed = pending_turn_speed;

/* —--- Execute motor command --- */

Figure 9: Pseudocode for command () function defined in command.c
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Monitoring serial line bandwidth

The serial program can monitor the serial line’s data rate. Simply edit the source file
serial.c, and change the line #undef TIMING TESTS to #define TIMING TESTS. Now,
serial will print out the data rate each second in bits per second.

By modifying TACIT_ COMMAND _FREQUENCY, as well as the constant
SENSOR_PACKET_FREQUENCY in the ARC file dispatch.c, it is possible to monitor
and tweak the rate at which data is sent across the serial line.

The motor library function TM cycle time () is also a useful tool. Dividing the number
of timer ticks per second (currently 1024) by the average cycle time yields the average
frequency at which the serial line is checked for commands and the sensors are read. This
frequency is, theoretically, the maximum rate ate which sensor packets could be sent and
commands processed. The practical maximum is constrained by various latencies within
the serial protocol as well as the serial line’s bandwidth.

2.7 Extending the serial protocol

The serial protocol is designed to be flexible and extendable. Synchronous and asynchronous
commands can be added without making any changes to the architecture of the protocol or
changing the syntax of currently implemented commands.

Commands sent from Linux to ARC consist of a one byte command ID followed by a
variable number of arguments. The end user executes commands by making a call to a
motor library function. This function sends the ID and arguments to the command process,
which in turn sends them to the serial process, and then down the serial line to the ARC
process dispatch. If the command is synchronous, ARC will write the response back to the
serial line using the synchronous stream. This response will be read by the serial process,
and will then be passed on to dispatch, routed to synch handler, and the synchronous
return value will be read by command. command will then return this value to the motor
library program. The synchronous command pathway can be seen in Figure 8.

Valid command ID’s are specified in the messages.h file. This file is used by both the
ARC and Linux sides of the serial protocol. New commands are created by adding entries
of the form

#define COMMAND NAME [bytevaluel

Bytevalue must fall between the constants CMD_LOW and CMD_HI, which are also
#define’d in messages.h

New commands can be implemented by executing the following steps:

1. Add a motor library function to the files motorlib.c and motorlib.h This function
should write the command ID and any arguments to MOTORSOCK.

2. Add a case statement to the function command() in the command.c file to handle the
new command. (See Figure 9) The code in the case statement should read all of the
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command arguments, and then write ATTN, the ID and the arguments to SERIAL-
LISTENSOCK. All commands sent to ARC must be preceded by an ATTN character.
The serial program will read these characters from SERIALLISTENSOCK, and then
write to them to the serial line. The ARC process dispatch will read the ID and ar-

guments from the serial line. If necessary, command should wait for the synchronous
return value to be written to SYNCHSOCK.

3. Add a case statement to the main() function of the ARC file dispatch.c to handle
the new command. If necessary, write a return value to the synchronous stream. (See
Figure 5) The dispatch process may either execute the command itself, or modify a
global variable which will cause another process to execute the command. The latter
method gives the programmer more control over the time granted to each process.

The serial protocol is undergoing constant scrutiny and we already see possibilities for
improvement. The current ”error” stream is used solely for sending debugging information,
and should probably be renamed ”debug.” A real error stream, which returns some form of
error values, could be implemented. Error messages could be timestamped, or they could be
stamped with some unique command ID. Implementing command ID’s (for asynchronous
commands) could be tricky, especially because some of the commands will be ignored by
the flow control routines. Sending command ID’s down the serial line could also reduce the
frequency of commands.

The interaction of explicit commands from the user at the Linux level with lower-level
code (such as obstacle avoidance or other “reflexive” operations) in the microcontroller is
interesting. Motor library programs currently have no way of knowing whether or not the
obstacle avoidance routines have overridden a user turn or drive command - this information
would be very useful to have. Should user programs have to check for this information, or
would an interrupt handler work better? At a higher level, how would a program decide to
?give up” and try another path when the obstacle avoidance routines prevent it from going
in a certain direction?
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3 Obstacle Avoidance

The goal of the obstacle avoidance research effort was to implement a reactive obstacle
avoidance strategy for allowing the wheelchair to perform collision free navigation in tight
and cramped spaces. We have developed an ad-hoc rule-based reasoning strategy that
uses the various sensors (bump sensors, infra-red proximity sensors and sonar sensor) on
the wheelchair to get information about obstacles in the neighborhood of the robot. The
obstacle avoidance algorithm then takes the motor control commands received from the
navigation system (human using joystick or autonomous driving program) and runs them
through the rule database, adjusting their values depending on the locations of the obstacles
before sending them on to the onboard motor controller. The current obstacle avoidance
algorithm has the following rule base:

if obstacle detected in front of robot then
if back is clear and both corners are not
then reverse at low speed
else if one corner is clear
then move forward at low speed while turning moderately
towards clear corner
else if one side is clear
then move forward at low speed while turning sharply
towards clear side
else
turn sharply towards one side
else
if sonar reading < 0.7 m
then slow to 20% of maximum speed
else if sonar reading < 1.2 m
then slow to 50% of maximum speed
if one cornmer is not clear
then turn sharply away from that cormer
else if one side is not clear
then turn slightly away from that side
else if drive command is to turn towards a side
then if corner is clear
turn slightly away from that side
else turn sharply away from that side
else if drive command is to go in reverse
then if back is not clear
then if side is clear
turn in place to clear side
else turn in place to any side
else if driving command higher than maximum speed
limit driving command to maximum speed
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The above obstacle avoidance algorithm was implemented using ARC, a software devel-
opment system for the wheelchair robot, and integrated into a remote operation demonstra-
tion system with the help of Chris Eveland. Multiple tests were performed on this system
for navigation through cramped doorways, computer lab environments, among moving peo-
ple and in hallways. The tests showed that the system is extremely robust when the size
of the obstacles is large enough to be detected fairly easily by the infrared proximity de-
tectors. Our obstacle avoidance algorithm performs very well on very hard tasks such as
going through a small doorway but fails to follow walls well. Part of this is due to a control
problem that is causing the robot to drift to the right.

Another aspect of this research work involved obtaining a better configuration of the
Infra Red proximity sensors on the robot. The original configuration was found to be lacking
and left major gaps and holes where obstacles were not being detected. We modified the
placement of these sensors based on experimental results and obtained a better coverage of
the wheelchair’s environment. Our next step is to model the sensors in the simulator and
find their optimal spatial configuration for obstacle avoidance.

Timing tests were run with the help of Craig Harmon on the wheelchairs when it was
performing obstacle avoidance. It was determined that the obstacle avoidance program was
generating drive commands to the motor controllers at a rate of 60-80 Hz per second. This
rate is very good and reflects our extremely simplistic approach to the problem. Some of
the limitations of the current system include the inability to detect thin vertical objects
such as chair and table legs, and dark color objects due to sensor limitations. Also, the
approach is completely ad-hoc and all refinement until now has been performed on the basis
of empirical results.

We propose to continue research in obstacle avoidance and formalize the above system
into a fuzzy rule based logic controller. This formalization would help us better understand
the operation of our system, while making it modular and easily maintainable. We plan to
use this obstacle avoidance algorithm in conjunction with a path planner to perform motion
planning for the wheelchair.
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4 A Software Infrastructure for Mobile Robotics

The goal of this software architecture is to allow quick production of visual systems for
robot control. There are several important considerations in the design of such a system.
One is to provide an interface for communication between low level vision routines, and
high level reasoning. Of course efficient use of computational resources is also important,
as well as issues of reliability and portability.

This architecture addresses all of these issues. In the following sections, the architecture
will be explained in the context of these issues. At the end a user’s manual is provided, as
well as the discussion of the design of a sample application using this architecture.

4.1 Architecture

There are two main components to the architecture. First a means of image based commu-
nication based communication between vision routines is provided using shared memory.
The library takes care of all of the synchronization issues, so that the programmer may con-
cern themselves with issues more closely related to their application. This communication
is provided using “video buffers”.

The second component is a lower bandwidth but more loosely coupled means of commu-
nication. This allows processes running on different machines an easy way of communicating
with each-other, again without burdening the programmer with the details of TCP /IP sock-
ets. This communication is provided by the “scene description bus”.

VideoBuffers

VideoBuffers are the application of the readers/writers problem to frames in an image
sequence. There is assumed to be one source which is generating images, and several
readers that may read from this stream.

These images are simply stored in a contiguous block of memory, along with a certain
amount of book keeping information. In addition, a writer function is registered to go
along with it. When the buffer is created, a thread that writes onto it is also created. The
programmer simply needs to specify a function that will do the writing.

Once the buffer has been created, readers may read from it, using a pair of functions
that open and close a frame for reading. Because there is a temporal ordering on the images,
there are two modes in which a reader may want to read images from the buffer. It may
want the current image (or some fixed number of images in the past), or it may want to
block and wait for the next image which it has not read yet. In order to handle both of
these situations, sequence numbers are kept. When a read request is given, the sequence
number must be given with it. If the number is less than 1, then it is taken to be an offset
from the current image. The call to the start read function will take care of making sure
no one is writing the requested frame, and if the frame has not yet been generated, then
suspending the thread until it is.
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openBuffer Opens a new buffer with the default values.
attachWriter | Attaches a writer thread to a buffer.

closeBuffer | Closes a buffer.

start_write | Get the writer lock for the next frame n the sequence.
finish_write | Release the writer lock.

start_read Get the reader lock for a frame.

finish_read | Release the reader lock.

Table 5: VideoBuffer functions

connectSDBus Connect to a server.
addSDBusFilter | Request messages matching a filter.
writeSDBus Broadcast a message.

Table 6: Scene Description Bus Functions

The Scene Description Bus

The scene description bus provides a broadcast medium (hence bus) over which information
about a scene may be shared. Clients attached to the bus are called filters. There is a server
that runs on one machine and distributes the information. The server passes information to
be broadcast to a specific client only if the message matches a pattern, or filter. In this way
the message only needs to go to the group of clients that are interested in that particular
type of message.

Putting it all Together

In building an application, several modules will be made for specific visual tasks. These
can then be used a stock building blocks and glued together via video buffers. From these
building blocks, a higher level representation of the scene will be built, which therefore has
a more concise description and is then suitable for broadcast over the scene description
bus. This processing will be done on fairly tightly couple processors. Then, the higher level
reasoning routines can listen to their output, and possibly put back information onto the
bus, as well as do whatever robot control is needed. This can all be done more remotely and
in a more distributed manner, because the amount of information that needs to be moved
around is less.

4.2 User’s Manual

There are relatively few function in the VideoBuffer and SDBus APIs. Their names and
purposes are outlined in tables 5 and 6. In the next two section they are described in more
detail.
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VideoBuffer API

The use of a video buffer is similar to the manner in which one would use a file. First it is
opened, then it is read or written to, and finally it is closed. The main difference is that
there are two function for both reading and writing: one to start, and one to finish. In
between one has complete access to the data so that it may be manipulated in the most
efficient manner possible.

These function are defined in the following sections.
openBuffer
Synopsis VideoBuffer *openBuffer ()

Discussion This function returns a buffer with all of the default settings. See the file
vbuf .h for a definition of the structure.

As one writes modules that use this API, it is natural to extend these functions. For
instance, a frame differencing module may want to define a function openDiffBuffer which
would be a specialized version of openBuffer. In fact that is exactly what is done in the
sample application (see below).

attachWriter

Synopsis

void

attachWriter (buf, func, args)
VideoBuffer x*xbuf;

void *(*) (void *)func;

void *args;

Parameters

buf The buffer that the writer thread will belong to.

func The function that will run as the thread. It should not exit under normal conditions,
continuously writing new data onto the buffer as it becomes availible.

args The argument to the function. Usually this will be an array of VideoBuffer pointers,
however anything that is desired may be passed. Part of this data must be the buffer
onto which to write, otherwise there will be no way for the thread to access its own
buffer.

Discussion This function attaches a writer to a buffer. It is nothing more than a wrapper
function for the thread creation function, but this wrapper allows the possibility of changing
thread packages, or other implementation details, without having to effect the API.
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closeBuffer
Synopsis void closeBuffer (VideoBuffer *buf)

Parameters

buf The buffer to be closed.

Discussion Simply close the buffer. It may not be used after it is closed, or results will
be undefined.

start_write
Synopsis int start_write(VideoBuffer *buf)

Parameters

buf The buffer to be written to.

Discussion Start writing on the next frame. If all frames in the buffer are currently being
read, then this will block until a space becomes free for the new frame. The contents of
the frame before the write are undefined. The return value is the frame number on which
the write should take place. This is not to be confused with the sequence number. The
sequence number is a unique number to every frame (at least until all of the 32 bit integers
are used up), while the number that it returned is just an index into the image array. The
only argument is a pointer to the video buffer to which the write is to take place.

finish write
Synopsis void finish write(VideoBuffer *buf, int frame)

Parameters

buf The buffer that was written to.

frame The frame number that was written.

Discussion The first argument is a video buffer to which the write has been done, and
the integer is the frame index on which it was done. After this is called, the writing locks
will be released, and the process is no longer allowed to write to the frame.
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start_read
Synopsis int start_read(VideoBuffer *buf, int frame)

Parameters

buf The buffer that will be read from.

frame The frame number that will be read from. It is either an offset from the current
frame, in which case the offset must be negative, or a sequence number, in which case
it will be positive.

Discussion The two arguments describe the buffer and sequence number from which to
read. The sequence number can be wither absolute or relative. If it is positive, it is taken to
be absolute, in which case permission will be granted to read from that sequence number,
or if that frame has been overwritten, the frame closest to it. In the case that the number
is negative or zero, the frame with that offset from the current frame will be given. In the
second case, the function may block until the requested sequence number is created. The
return value is the index into the image array from which to read that frame.

finish_read
Synopsis void finish read(VideoBuffer *buf, int frame)

Parameters

buf The buffer that was read from.

frame The frame number that was read.

Description The two arguments are the buffer and image index that a read has been
complete on. The locks associated with it will be released.

SDBus Client API

The SDBus’s API has only three functions. The basic sequence of actions for a SDBus
client is to first make a connection to the SDBus using connectSDBus, then to (optionally)
add filters using addSDBusFilter. After that setup is done, data may be written to the
bus using writeSDBus. What exactly it means to connect to the server and write to it
should be fairly clear without further explanation. Adding filters, however, may not be so
clear. When data is written to the SDBus, not all of the clients that are listening to it may
need that data, so having the server send the data to all of the clients would not be very
efficient. As a result, each client may define filters for different types of data that it wants
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to receive. There are basically regular expressions which the server can match against to
decide who to send the data to. Therefore, when a client wants to get a certain type of
data, after connecting to the server, which allows it to write to the bus, the client must then
send a message requesting a specific filter to be added. This message consists of three parts:
the regular expression, a function address, and an ID. The regular expression is what the
server matches against to decide if the client should get that message. It should be in the
form of a PERL regular expression, without the “/”s on either end. The function address
is a function that will be called when this message is received. To implement this, there
is actually a thread created when the bus is connected to. For the most part this thread
sits blocked waiting to be able to read from the server. When the server sends a message
to the client it also sends a function address and id along with the message, so that this
thread may call the function with the correct arguments. To the programmer, this may
remain transparent, and the effect is that the function that is added with the filter will be
called each time that a message matching the filter is received. Its arguments are the text
of the message, plus an id number. This ID is the last bit of information that is needed to
set up a filter. It is simply stored by the server and sent back whenever a match is made.
This allows the same function to handle multiple filters, and know which filter it was that
matched the message, simply by looking at the ID that is sent back. For the most part,
this is not needed, and the ID may be set to 0.

The actual definition of each of these functions follows:

connectSDBus

Synopsis SDBus *connectSDBus(char *hostname, int port)

Parameters

hostname The host to connect to. The server should be running on this host, otherwise
the connect will fail.

port The port on which the server is running.

Discussion The default port for the server is 8157, so that is most likely the value to use
for this argument. The return value is a SDBus pointer which is used when referencing this
bus later. See below for more information on starting the server.

addSDBusFilter

Synopsis

void

addSDBusFilter(bus, filter, func, ID)
SDBus *bus;

char *filter;
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void(* func) (int, char *);
int ID;

Parameters

bus The bus to add the filter to.
filter A PERL regular expression with the “/” removed from either end.
func The function to call in the event of a match.

ID An itenger that will be passed, along with the broadcast message, to the function han-
dling matches.

Discussion This function adds a filter to the bus. In order to reduce wasted bandwidth,
a message is only sent to a client if the client expresses interest in it, by having it match a
filter. When the connection to the bus is made, a thread is started to read from it. When
the server detects a filter match, a message is sent to the client, and read by this thread. The
message includes the function that will handle the message, an ID to identify which filter
matched the message, and the text of the message itself. The client thread then dispatches
the specified function with the text and ID parts of the message.

writeSDBus
Synopsis void writeSDBus(SDBus *bus, char *str, int len)

Parameters

bus The bus to write to.
str The string to write.

len The length of the string.
Discussion This function simply writes a string onto the specified bus.

The SDBus Server

The SDBus requires a master server to be running that keeps track of all clients that are
connected to the bus, as well as what requests they want to listen to. If a new message is
sent over the bus the message is forwarded only to those hosts that have requested to get
that type of message, and it will be wrapped appropriately.

There are no arguments required to start the server, simply run the program sdbserver,
and it will be ready. Debugging information is sent to the standard out, this may be
redirected if it is not needed.
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The SDBus in LISP

The nature of information that is likely to be going across the SDBus, and the manner in
which it is most likely to be used make is desirable to be access the bus from within a LISP
function. For that purpose, I have made a non-threaded version of the sdbus functions.
They reside in the sdbus_nt .o object file.

The file filters.lisp contains function definitions for a LISP version of the API, which
can be used by Allegro CommonLISP. The simplified LISP API is:

(lconnectSDBus [ hostname [ port 1 1 ) This function returns a number that is the
file descriptor of the bus. Hostname, if provided, is a string containing the host on which
the server is running. Port, if provided is the port to connect to. The defaults are
fox.cs.rochester.edu and 8157.

(laddSDBusFilter bus filter func id) This function has no meaningful return value. Bus
should be a bus file descriptor, as returned by lconnectSDBus. Filter should be a PERL
regular expression which will match any message to be received by this callee. Func should
be a LISP function that has been declared c-callable. Its arguments should be a signed-
word (integer) which is the id to attach to this instance of this filter. This allows the same
function to keep track of different filters by giving a different ID to each filter. This ID will
be passed to the function along with the message. The second argument to the function is
a pointer to a character. Finally, ID is the ID to pass to the function.

(lwriteSDBus bus message) This function has no meaningful return value. Bus should
be a bus file descriptor, as returned by 1connectSDBus. Message is the message to send to
the bus.

(IreadSDBus bus) This function has no meaningful return value. Bus should be a bus
file descriptor, as returned by 1connectSDBus. When called, execution will block until there
is a pending message sent across the bus if there is no pending message when called. This
message will then be read, for its text, ID, and function address. The function address will
then be called with the text and the ID as arguments.

(lcloseSDBus bus) This function has no meaningful return value. Bus should be a bus
file descriptor, as returned by lconnectSDBus. Upon being called, this bus’ file descriptor
will be closed, causing the SDBus server to remove any filters that are owned by that
connection to the bus.

4.3 A Sample Application

For the purpose of an example of how the system could be used, a system for analyzing
security images is described. The input to the system is a video stream coming from a video
camera, and the output is a collection of pictures of suspects and the objects they moved.
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To do this, a number of reusable visual modules are created for tasks such as frame
differencing, flow computation, and so on. They are joined together using VideoBuffers,
and output important information such as actor positions and object movements to the
SDBus. Two (possibly remote) LISP processes then process this information to keep track
of the position of actors and objects, as well as detect which actors are suspects. When a
suspect is found, a message is sent back over the SDBus to the visual part of the system
so that the image of the suspect may be saved. These interconnections are explained in
figure 10.

33



(((<h> <x>) 1)
(<ssau> ssau)
(<aweu> aueu)

readess Ip | Jeadde)

spunog
EITERIS

U89S JNBYIUAS
10 ‘aimde)d oapIA

((<A> A1100 |9n)
((<h> <x>) 1)
(<ssau> ssau)
juauanau )

IIL

((<ssau> ssau)
((<h> <x>) 1)
(<aueu> aueu) J01oe)

((<aueus> 1298 [qo)

1914
1010Y

isyom
pajawsa|dwi 194 10N
snq 01 peaiy) wodj Indinp

.sng, ayL
peaiy L

laying 08pIA

X8l Moe|g
xa] Aaio

(" as1y)

D
[T

N

(<aueu> J01oe) 109dsns)

109dsng

194

v e

:loo] Buibbngaq rensiA

Figure 10: The design of a sample security application.
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Figure 11: Sample output of a quadrature encoder. Here A leads B. If the shaft were to
rotate in the opposite direction, A would follow B.

5 Low Level Control to Enable Visual Servoing

One of the primary goals of our wheelchair robot is the ability to navigate via visual control.
In this section we discuss some of the foundations needed in order to perform this task.

One of the first things that comes to mind to try out when starting with visual control
on the wheelchair is to try it oneself, using teleoperation. After hooking up the cameras,
and writing an X based control program that allows teleoperation, we quickly discovered
that controlling the wheelchair well is nearly impossible. Differences in calibration of the
motor torques, differences in tire pressure, and the angles at which the small wheels are
pointing all play a significant role in making the wheelchair go in a direction other than the
one you tell it to go.

If humans are unable to drive the wheelchair in a straight line, it seems unfair to ask
the visual behavior program to be able to do the same task, so a lower level stabilization
is needed. A simple PID controller getting feedback from optical encoders mounted on the
motor shafts can achieve this.

5.1 Hardware

Unfortunately, the encoders that come with the wheelchair are not suitable for this control
application, because they do not give direction information. One would think that a state-
vector this basic would have no need of a sensor: if we command forward we should go
forward. However, if starting up when the front and rear casters in arbitrary positions, (as
occurs after tight turns), the initial driving wheel velocities are in fact not determined by the
command, and wheels can actually go backwards. We have replaced the original encoders
with bi-directional hollow shaft encoders. Our controllability improved dramatically — we
believe that this upgrade is a fine investment and recommend it highly.

The encoders give two outputs, A and B, which are square waves 90 degrees out of
phase, as shown if figure 11. Although the 332 is capable of decoding this signal, the ARC
system does not provide any way to do so in software, so a decoder is needed which converts
this input into increment/decrement signals. This circuitry must then be incorporated into
the tupperware box containing the 332 micro controller.

To this end, a sub-board with the circuit of figure 12 is made. It is then patched onto
the Tin Man supplementary controller board. There are only 14 TPU channels provided by
the Tattletale prototyping board that this is based on, which means the extra two channels
must be taken from another function. Unfortunately, there are only two 5V TPU channel
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Figure 12: Decoder circuit for the wheel encoders. Parts are as follows: R1, R2 are 100kf2.
R3, R4 are 1.5kQ). C1, C2 are 0.1uF. Ul, U2 are US Digital LS7083. J1 and J2 control the
output frequency, and should both be in the same position. In the up position, there will
be an output signal for each transition of the square wave input, while in the down position
there will be an output only for every complete period (every 4 transitions).

slots available on the TinMan version of this board, so they must be taken from either a 9
or 12V source. The two best candidates are connectors 14 and 15, which are used for LED
2 and 3 with TPU channels 6 and 7. To use these two slots, take the power from connectors
20 and 21, but run the signal over to the inputs for connectors 14 and 15. Of course this
means that unless the reverse is done for these connectors, they will not be useful anymore.

One more complication in getting the decoder board patched in is to hook up the LEDs.
They must be buffered, or the LED will keep the input to the chip low. There are several
choices on how to do this. One is to disconnect the LEDs, while another is to add an LED
buffer chip. Our choice was to use two of the channels of the existing LED buffer that are
no longer needed for channels 14 and 15. They drive a pair of LEDs so the A and B inputs
from an encoder will work in unison.

5.2 Software

After there is hardware support for this control, some software must be written to take
advantage of it. This falls into two categories. First the provisions for reading from the
encoders must be modified, and second a PID controller must be written.

Modifying the library is a simple matter of initializing the two extra channels (TPU
channels 6 and 7), and in the function that updates the shared variables holding the counters,
subtract the decrements in addition to adding the increments to the left and right counters.

That done, it is a simple matter to write the controller. First, there should be a control
process, that will try to keep the chair at a given speed and heading. This information is
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H Connector‘ Sensor ‘ Port ‘Volts H

0 1RO EO0 12
1 IR1 E1l 12
2 IR2 E2 12
3 1IR3 E3 12
4 1R4 E4 12
5 IR5 E5 12
6 TIR6 E6 12
7 IR7 E7 12
8 IR8 ES8 12
9 IR9 E9 12
10 IR10 E10 12
11 IR11 El1 12
12 Unused TPU4 9
13 Sonarl TPU5S

14 Disabled

15 Disabled

16 R_BUMP AD3 5
17 L_BUMP AD2 5
18 Unused AD4 5
19 Unused ADG6 5
20 Left Inc TPUG6 5
21 Left Dec | TPU7 5
22 Right Inc | TPUS 5
23 Right Dec | TPU15 5

Figure 13: Connection for the modified TinMan Tattletale Model 8 board. Connectors 14
and 15 could be connected to AD5 and AD6, but are not used in our application.
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stored in a global variable, and when drive and turn commands are received from the serial
line, they are updated.

The control is done in a loop. At the start of the loop, the current errors for the drive
and turn outputs are determined. Things would be easier if we had direct control over
each wheel, because our sensors and controls would be directly matched. As it is we must
determine our drive speed and turn speed based on what we see from the two wheels motion.
To calculate the measured drive speed, d,, take the average of the two wheel’s speeds. The
measured turn speed, t,,, is the difference between the left and right wheels. Let z; and z,
be the left and right rates of change of wheel position. Thus
T; + Ty

2

tm = i — &y

dym =

Next the drive and turn speeds we would like to set (called ds and t5) can be defined as some
constant times our inputs. This in turn allows us to define our driving and turning error as
de = ds —dm, and t, = ts —t,, respectively. The rate of change of error can be approximated
by taking differences between successive iterations of the loop, and the integral of the error
can be approximated by the following:

t t—1
/ dedt =~ a/ dedt + (1 — a)d,
0 0
t

t—1
/tedt ~ a/ todt + (1 — )t
0 0

The command to be set to the motors is then a weighted sum of the error, integral of error,
and the derivative of the error.

There are some tricks that can make the controller work better. One is to have it defer
its time slice a number of times before it does the control in each loop. This allows the
estimate of velocity to be less prone to variation due to the speed at which it can sample
the encoders. With our setup, it is capable of updating the control outputs at about 100Hz.
Cutting this down to 25Hz still gives quite good response, but allows the encoders to see
more ticks per time unit. One way to get the best of both worlds would be to get more ticks
per revolution of the encoder. Our encoders have 40, which is close to what the original
had, while it is possible to get up to 100. This coupled with the 4 times multiplication
possible with the decoder board, would give 400 ticks per revolution.

A second trick is to note that the motors will not move at all with less than a 50% duty
cycle. Therefore, it is a good idea to add 50, or -50, to the motor commands issued to the
chair. This will significantly reduce oscillations that would be caused by this otherwise.

Another place to take careful attention is balancing the gains between turning and
driving. Because the hardware motor controller has different magnitudes of output for
turns and drives, the gain needs to be different to get good behavior.

5.3 Limitations

This controller is intended to be an aid for higher level control, and as such is not intended
to solve all of the problems associated with controlling the chair. In fact, it can not hope
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to with only the two wheel position sensors that it has as inputs.

One problem that it is that it will have a hard time going straight for a long period of
time. Although it is good at overcoming the problems associated with the smaller wheels
forcing it to one direction or the other at start up, once things get going it cannot entirely
correct for at least one problem. This is that due to differences in tire pressure, the wheel
diameters are not exactly the same, which means although its sensors may be telling it that
it is going straight, it is not.

This can be overcome with a trim, but it does point out another shortcoming of the
controller. These differences in diameter along with possible wheel slippage on some surfaces
makes navigation based on these encoders prone to error. Thus a position control, rather
than the described velocity control, is not really feasible.

Regardless of these problems, this is exactly what the higher level systems hope to solve
using vision or other techniques. Eliminating the effects of the casters and differences in
motor torques is still a great help for these systems, and what this controller was designed
for.
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6 A Virtual Environment Testbed for Driving a Wheelchair

6.1 The Possibilities of Simulation

Why and when should a simulator be used instead of the “real thing”? Factors for use in
such considerations include the ease through which the real task may be performed, the
time it takes to perform the real task, how dangerous the real task is to perform, the ease of
simulation of the factors involved, and how easily the sensory input to the system may be
modelled. How much each of these factors is weighed depends on the goals of the system.

For instance, consider the goal of training people how to use power wheelchairs as in [5].
This task is easy to perform in a real environment (just put the trainee in the wheelchair) and
it takes an amount of time dependent on the trainee. The motivating factor of simulating
the power wheelchair in a virtual environment is primarily because letting a trainee loose
in a wheelchair might cause the trainee to have a dangerous accident and might also cause
harm to the wheelchair. Of course, the main factor against simulation is that the wheelchair
simulator may only serve a limited amount of individuals and developing a realistic simulator
may prove very expensive.

Currently, wheelchair simulators are mainly used in the design of wheelchair systems [30;
29] and development in semi-intelligent wheelchair systems [25]. As Jari Ojala discusses,
the use of simulators for these purposes contain advantages and disadvantages. The main
advantages of such a system are:

1. Simulators may aid humans in finding fundamental design flaws.

2. Algorithms may be tried over and over on a simulator and their performance may be
fine tuned.

3. Simulators are safe and predictable.

4. A simulator’s environment may be slowed down in order to see problems in the system
more clearly.

Of course this doesn’t mean the simulator doesn’t have associated problems. The biggest
problem with any simulator is that it can not simulate every aspect of reality. For instance,
a room in virtual reality lacks all room acoustics. Real sensors may be hard to model or
the environment itself may prove difficult to model in a simulator.

While the exact nature of a sensor or environment may be near impossible to model,
simpler, “mostly” correct models may be achievable. As an example, a ccd camera is
modelled easily for a virtual reality simulator as it simply “takes a picture” of a scene from
part of the virtual environment. Simulating ultrasonic sensors is much more difficult.

The technique discussed in [25] creates a computer graphics ultrasonic sensor. The time
response Y (¢) in a space P (sensor’s local coordinate system) may be calculated as follows
when the input is an acoustical pulse:
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V() = Ajpehh(t — 2

where 7 is the distance of P and transducer center O. The D, term is the directional
characteristic of the sensor used, 6 is the azimuth of P to the transducer center axis, A is a
constant, and h(t) is the impulse response of the sensor. The echo response Z(t) is obtained
through integrating this equation over the surface of the relevant objects.

Z(t) = [Y(£)dS + N(t)

where N (t) is a random noise generator. In order to shorten the integration the hA(t) term
may be calculated once and stored in a static matrix. D, may also be approximated using
a simplification based on Bessel functions and the integral in Z(¢) may be calculated using
the areas of the polygons of which the objects are formed. An even simpler approximation
would be to shoot out a two dimensional “ray” from a graphical object in a certain direction
and whatever the ray intersects is an obstacle.

6.2 Simulator Dynamics

I guess I never understood the big deal about this stuff simply because most of it is sort
of ”built into” the original SGI perfly simulator. Basically, I had to hack Roger’s code
down to 2nd order Runge Kutta (so it didn’t mess up the speed of the simulation and go
unstable). The SGI has a very nice clock function which is used by the original simulator
in several places and which gets called whenever a drawing update happens, as that’s when
the car/wheelchair position gets updated.

Of course, none of this *guarantees® that you get real-time simulation. In fact, if other
intensive apps are running in the background you don’t get real-time sim. When nothing
else is running and you use super user privileges to hog the processors you get from 30-60
Hz depending on the complexity of the world you're in (the lab is pretty simple and tends
to run around 60 Hz while Garbis’ town runs around 30 Hz with the dynamics code hooked
in).

Some of the relevant simulator code, which gives a flavor of the parameters that are at
issue and the complexity of the dynamic model, appears in Appendix A.

6.3 PerSim: A program for Virtual Reality Simulation

The origins of PerSim exist in a demonstration Silicon Graphics program called Perfly.
The Perfly program allows a graphical database or group of scenes to be loaded and enables
flying or driving around this scene with a mouse [11]. This program has subsequently been
modified for Garbis Salgian’s driving world [27] which has added automated object behavior
as well as all items needed for a full virtual reality simulator. Garbis Salgian is currently
in the process of interfacing this program to two Phantom robots in order for full haptic
finger sensing in virtual reality environments.
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The PerSim program currently contains an easily modifiable car dynamics module, the
ability to add dynamic objects that move on a set path with a path file, the ability to add
static objects to the graphical world, and contains a module for collision detection. The car
dynamic initialization file contains modifiable parameters such as the maximum car speed
and maximum acceleration while a car description file contains information about what the
car will look like and the path of the car if it is loaded as a dynamic object. A dynamic
model for a wheelchair is in the process of being implemented.

In order to avoid the problems associated with “works in progress”, a working version of
the PerSim program was copied to the directory /u/bayliss/sim/persim. In the future, all
necessary modifications to this program will be communicated to other users of the program
(when there are other users) in a timely manner and different versions of the program are
already being kept track of through the use of RCS. In this manner, it is hoped that other
individuals will not have to each keep and maintain their own version of PerSim (PerSim is
not a small program), but will only need a copy of the part of the program that needs to
be modified for their needs.

In virtual reality simulation, often one of the most important aspects of the simulation
is how realistic the world appears. For instance, compare the pictures in Figure 14. In order
to achieve this degree of realism it is necessary to model objects in the environment. This
may be a time consuming task for complex objects such as computers and requires special
software. The software used for the computer lab environment model is called Showcase.
The Showcase tool not only allows the creation of three-dimensional models with a drag-
and-drop method, but allows texture mapping and shadow creation for the models.

Only a few drawbacks exist when using the Showcase tool. The first is that Showcase
does not easily allow the creation of models that need to be a fixed height, depth, and width.
The “container” where models are created contains a grid where each square is 0.5 meters
(or possibly 0.5’, depending on what metric system the container uses). Unfortunately,
when an object exceeds a certain size in one dimension, the program reduces the total
amount of grid squares (by some multiple of 5). Thus, when a model for a software lab floor
was extended to 50 meters, the 100 grid squares were cut down to 10 grid squares (each
of size 10 meters). According to the on-line documentation, the grid squares exist only for
“relative” size modeling between different objects.

While Showcase allows the creation of shadows for modelled objects, it does not allow
the creation of different light sources. A tool called Scene Viewer enables this and also allows
light sources to be different colors. For both SceneViewer and PerSim, the Showcase model
must be saved in Inventor file format. This particular file format is available from showcase,
which saves Inventor files in binary Inventor format (rather than ASCII Inventor format).

After completing a model of the necessary environment for simulation, persim may be
used to perform simulation tasks. The persim program allows easy run-to-run modifications
through the use of initialization files and an extensive group of command line options. In
this way, both static and dynamic objects may be added to an environment and the speed
and behavior of the main object of simulation may be changed.

Command line options control the number of channels to be used, the color of the sky,
the kind of driving (or flying) to be used, and tell various statistics about the program while
it is running. Command line options are located in the cmdline.c file and keyboard options
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(b)

Figure 14: (a) The software lab at the University of Rochester Computer Science Department. (b) A three
dimensional model of the software lab.

43



(options available while running a program) are located in keybd.c. Note that all letters of
the alphabet are in current use for command line options, so it is difficult to add this type
of option to the persim program.

Three types of initialization files currently exist. Object description files describe static
and dynamic object properties including the file containing object graphics as well as the
position of the object. Dynamic objects also need the file name of a path file. All dynamic
objects currently move on a set path and the object’s path file contains the coordinates,
angles, and speed of an object on this path. A demonstration object description file may
be found in /u/bayliss/sim/persim/descr/objdescr. This file also contains miscellaneous
information that Garbis Salgian uses for controlling the speed, steering, and braking of a
go kart simulator.

A third type of initialization file is used by the wheelchair dynamics module and tells
about the different properties of a wheelchair, such as the maximum allowable acceleration
and the wheel radius. This initialization file allows the dynamics of the wheelchair to
change as the physical makeup of the wheelchair changes. For information on the individual
elements of the file, please see Roger Gans. A sample initialization file may be found in
/u/bayliss/sim/persim/descr/init file.

6.4 Plans for Using the Virtual Wheelchair Environment

One of the main goals of real-time EEG analysis is to allow handicapped people to drive a
wheelchair using EEG information. In order to achieve this goal, several procedural steps
must be accomplished. Artifact must be reduced or eliminated from the signal in order to
maintain control. Higher dimensional control must be exhibited through pattern recognition
techniques and experimentation. While past systems have shown only 1-dimensional control,
higher dimensional control is needed in order to drive a wheelchair as the wheelchair must
have the ability to go, stop, and turn in different directions. Moving a cursor on a screen is
a simple task for use in experimentation.

After higher dimensional control has been achieved, it will then be necessary to experi-
ment with wheelchair driving. In the early stages of trying to drive, people will most likely
make many mistakes and will need a safe environment in which to make these mistakes.
A virtual wheelchair simulator provides such an environment. As an added benefit, the
virtual environment is completely controllable and obstacles may be added or removed in
order to test the ability of a trained individual to move the wheelchair in the environment
of the software lab. This will provide a measure of how well the system works before people
are asked to try the system in the real world.
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7 A Frame-Grabber Abstraction

The Matrox Meteor is a PCI frame grabber that allows one to capture color or monochro-
matic images at rates of up to 30 Hz and store them directly in the memory of a personal
computer. For a detailed description of this device, we refer the reader to its WWW page:
http://www.matrox.com/imgweb/meteorm.htm. A driver for it, to be used with the FreeBSD
operating system, was originally developed by Jim Lowe and Mark Tinguely in 1995. In
1996, Jim Bray converted this driver to the Linux operating system. The resulting Linux
version, currently on release 1.4, has been maintained by Ian Reid and is available free
of charge. It works with kernel versions not older than 1.3.72, offering a lot of different
configuration options to the user, but it is not exactly straightforward to use.

One problem is that it requires the preallocation of a big area of physical memory during
the installation of the Linux kernel. The size of this area, which is reserved exclusively for
the frame grabber internal data structures and for the grabbed images, determines the
limits on the dimensions of the images that can be grabbed. However, this information is
not directly available for the user programs, making the control of the image size a difficult
issue. In real-time applications, it is interesting to divide this area in multiple buffers so
that frames already grabbed don’t need to be copied before the process of grabbing the next
frame starts. However, this requires the user to manage certain internal data structures of
the current version of the driver directly, not to mention the fact that in this case the
maximum size of the images depends on the number of buffers used. In addition, there are
certain restrictions in the sizes allowed for the images which are not very well documented.
For instance, if the input for the frame grabber is in NTSC mode, then the number of rows
must be a multiple of thirty and the number of columns must be a multiple of forty. And
finally, it seems to us that some of the configuration options are not very useful for most
users and the additional complexity needed to take care of all of them makes the driver not
very user—friendly.

In order to simplify the usage of this driver, we developed a programmable interface,
which hides most of its complexity, greatly reducing the application development time.
We eliminate some of the options originally available (the most drastic restriction that
we impose is the fact that the original driver supports input signals in NTSC, PAL and
SECAM formats, but our interface was developed exclusively for NTSC), but we believe
that for many real-time applications, the resulting simplicity more than compensates this
loss of generality. From the point of view of the user, our interface is composed by two main
elements: a configuration file that can be used to set the frame grabber a priori and a library
with routines and global variables that provide some basic user—level instrumentation and
allow the configuration of the frame grabber to be modified in real-time.

7.1 URCS Users

If you are a user at the University of Rochester Computer Science Department, then you
may skip the installation (Section 7.2). Just log on the machine firestone.cs.rochester.edu
and the INTERF_ROOT directory (which we mention in the following sections) is located at
/home/carceron/meteor_int_1.4.1.
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7.2 Installation

If you wish to use this interface but it is not available at your institution, you can obtain it
free of charge via anonymous ftp. Notice that this code comes with no guarantee at all and its
authors are not liable for any damage that its utilization may cause. Of course, a prerequisite
for the utilization of this interface is the proper installation of the Matrox Meteor driver for
Linux, version 1.4. So, assuming that the driver is properly installed, issue an anonymous ftp
at ftp.cs.rochester.edu. After sending your complete e-mail address as password, follow the
script below:

ftp> bin

ftp> cd pub/packages

ftp> get meteor_int_1.4.1.tar.gz

ftp> quit

linux % gunzip meteor_int_1.4.1.tar.gz
linux % tar xvf meteor_int_1.4.1.tar
linux % cd meteor_int_1.4.1/include

This will take you to a directory containing two header files. Now, you must edit the
file meteorinstal.h, in order to inform the interface about the particularities in the Meteor’s
installation at your machine. More specifically, you will be required to provide four pieces
of information:

e The path to the driver’s header file called ioctl_meteor.h (according to the previous
installation);

e The number of pages of physical memory (with 4 KBytes each) that were reserved
to the frame grabber when the Linux kernel was compiled (according to the previous
installation);

e The path to the meteor device (according to the previous installation);

o The default path to a file that is going to be used to define the initial configuration of
the Meteor frame grabber (in this case you are free to choose any path that you want,
but we suggest that you provide the path for the .meteor file located at the directory
meteor_int_1.4.1 that you just created).

After the file meteorlnstal.h is properly modified, you need to compile the interface,
which can be done with the following commands:

linux % cd ..
linux % make
linux % pwd

At this point, the interface is ready to be used. Notice that after executing the commands
above, your current directory should be the meteor_int_1.4.1 that was created during the
installation process. From now on, we refer to the complete path for this directory (displayed
by pwd) as INTERF_ROOT. You can check whether the installed interface works properly
or not by executing the following sequence of commands:
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linux % cd examples
linux % make
linux % make demo

This should create a small window that exhibits the images digitized from the first Compos-
ite Video input channel of the Meteor board (there may be a small initialization delay, and
the colormap used to display the images may seem a bit strange). After you see the images
in the screen, type (Control-C). The window should then disappear and some performance
statistics should be displayed.

7.3 The Basic Programming Paradigm

The interface that we introduce here is primarily aimed at real-time applications. So,
we adopt an event—driven programming paradigm, in which the role of the final user is
to provide handling functions for the main events that can take place in the system. In
practice, these handling functions are not actually used as handlers for events such as
interrupts generated by the digitization of new frames. This job is done by the interface
itself. When the interface then verifies that it is safe to start the processing of a new
frame, it calls the proper handling function and provides a time stamp indicating the exact
moment in which the frame in question arrived. This way, new frames can be received by
the interface, in case an invocation of a handling routine eventually takes more time than
the digitization period. But from the point of view of the user, the handling routines are
executed atomically, in the sense that each one of them is guaranteed to finish before the
next one is called.

More specifically, a typical user program written with this interface must include at
least one call to a function called imgProcLoop, whose prototype is declared in the file
INTERF_ROOT /include/grabber.h. This function consists of a real-time image processing
loop that keeps track of the arrival of new digitized frames and invokes certain user—defined
handling routines that it receives as parameters, whenever it is save to do so. imgProcLoop
takes five arguments: the first two are the command-line variables argc and argv, and the
last three are the user—defined handling routines (if the application does not need one or
more of these, the user can simply pass NULL pointers instead).

Immediately after this function is called, the frame grabber is properly configured and
started in a mode that grabs a single image. The function passed as the third argument of
imgProcLoop (if any) is then called, receiving a pointer to the first byte of this initial image
as argument. This function is intended to be an initialization function for the real-time
image processing application. For instance, in a tracking system, it could be a function that
recognizes a certain predefined target conveniently located in front of the camera. Then,
the grabber is switched to a continuous capture mode and the function corresponding to
the fourth argument of imgProcLoop (if any) is called every time a new image is available,
also receiving a pointer to the first position of the image to be processed. The user can
read and write directly to the buffers where the digitized images are stored by the frame
grabber, because the interface guarantees that each buffer is not modified until the execution
of its handling routine is over. Finally, whenever the image processing loop is terminated

47



(through a keyboard—generated interrupt, for instance), the fifth argument of imgProcLoop
(if any) is invoked with no argument.

So, any application developed with our interface must include the header file grabber.h,
located at INTERF_ROOT /include. This file, on turn, includes meteorlnstal.h, located at
the same directory. Thus, we recommend the utilization of the directive -1 (with the path
INTERF_ROOT /include as argument) when compiling. The resulting object files must be
linked with the library INTERF_ROOT/lib/grab.a, which contains the implementation of
the frame grabber interface. For debugging purposes, the user can link code with grabdb.a
instead of grab.a.

To illustrate the description presented so far, we include the user code for a simple
application that just grabs images and displays them remotely, using a set of X-Windows
routines (some of which were implemented by other authors) declared in the file
INTERF_ROOT /examples/src/xdisplay.c:

#include "grabber.h"
#include "xdisplay.h"

/* Trivial usage example: just grab the frames and display them using
the functions defined in xdisplay.h */

int main (int argc, char * argv[])

{
(void) imgProcLoop (argc, argv, setupDisplay, displayFrame, finishupDisplay) ;
}

Since the only argument to any user—defined handling routine (if any) is a pointer to
the first byte of the frame to be processed, we use a global variable called geo (also declared
in the file grabber.h) in order to provide the user with information about the dimensions of
the incoming frames and the format in which their pixels are encoded. The variable geo
is intended to be a read-only variable and the values of its fields can not be changed
directly be the user under any circumstances, or unpredictable errors (such as the
application crashing or hanging) may happen. It contains two fields called rows and columns
which store the dimensions of the incoming frames and a field called oformat which is always
equal to one of the following four constants: METEOR_GEO_RGB24, METEOR_GEO_RGB16,
METEOR_GEO_YUV_PACKED or METEOR_GEO_YUV_PLANAR. For a detailed explanation
of the meaning of the pixel formats represented by each of these constants, we refer the user
to Section 7.4.

Using Command Line Arguments

The function imgProcLoop uses getopt to parse the command line arguments stored in argc
and argv. This means that the user can define command line arguments in a completely
independent way, but must necessarily parse these arguments with getopt too, or otherwise

48



they will be interpreted as arguments to imgProcLoop. If you are not familiar with this
parsing routine for optional arguments, try man 3 getopt for details.

In general, the usage of an application built with our interface is:
(name) [ (userDefinedOptions) —— ] [ (interfaceOptions) ]

Notice that the user—defined options must appear always before the interface options
and these two types of options must always be separated by the delimiter —— (double minus
sign). The interface options may be any subset of the following list:

e —d(path): (path) specifies the path to the device corresponding to the frame grabber.
The default is the path specified during the installation (/dev/meteor0 for URCS
users).

e —f(path): (path) specifies the path to the file that contains the configuration options
for the grabber interface. For URCS users, the default is INTERF_ROOT /.meteor

e —h(host): (host) specifies the name of the machine in whose console the images will
be displayed, if an X-Windows interface is used. The default is the current value of
the environment variable DISPLAY. Actually, this environment variable must exist
previously (possibly with a different or even undefined value) in order for this option
to work.

e —s: do not display any statistics about the application when its execution is finished.

7.4 Configuration Options

So far, we described the steps needed to use the frame grabber in the simplest way possible.
But of course, one of the main purposes of this interface is to allow the user to configure the
frame grabber to meet the specific requirements of the intended application in a simple way.
If this configuration is not going to be changed throughout the execution of the real-time
image processing loop, then it can be performed with a configuration file, whose name and
location are specified by the command line option —f (as shown above).

Each non-blank line on this file should contain the name of an option to be configured
followed by the value to which the option must be set, and possibly some comments af-
terwards. In the default configuration file INTERF_ROOT /.meteor we show all the options
available. Now we explain each one in detail.

Capture Modes

The original driver for the Matrox Meteor frame grabber (without this interface) can capture
images in multiple modes of operation:

e Single—Frame Capture: The user explicitly issues a capture command to the frame
grabber and the frame grabber outputs a single image to the beginning of the preal-
located memory area. Whenever another image is needed, another capture command
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must be issued. This mode has little programming overhead if compared to the other
options, but it is not very efficient.

Asynchronous Multiple-Frame Capture: The user issues a single command to
start the capture and the frame grabber outputs new images to the beginning of
the preallocated memory area as fast as it can. Whenever the image processing is
over, the user issues another command to stop the frame grabber. This mode is also
relatively simple to use and it is much faster than the previous one. However, the
user has no control over the frequency of capture. Furthermore, successive images are
written in the same memory location and the application may read different parts
of multiple frames as if they had been digitized at a unique instant. So, this mode
is ideal for applications that can get by with free—streaming data such as the simple
grab—and-display usage example that we showed in the previous section.

Synchronous Multiple-Frame Capture: Finally, there is this mode in which
the user again issues a single command to start the capture, but the images are
digitized at a fixed rate (30 Hz by default) and are stored at different buffers inside
of the preallocated memory area. Whenever a new frame is digitized, a user—defined
interrupt is generated by the driver. The user application is then responsible for
catching these interrupts and calling the proper handling routines. This mode is
perfect for real-time computer vision applications, but if the driver is used without
our interface, it requires a considerable programming overhead. Initially the user must
determine the number of buffers to be used. This number can never be smaller than
three, but on the other hand the total amount of memory required by all buffers,
with the selected image size, can not be greater than the size of the preallocated
memory area less the space needed to keep the internal data structures of the driver.
Among other internal data structures, the driver uses a bitmap to keep track of which
buffers are free. Whenever the digitization of a new image is completed, the driver
marks a selected output buffer as busy. However, it is up to the user to choose the
order in which the stored frames will be processed. While this results in greater
flexibility, it also adds the complexity of forcing the user to keep track of the states
of the bitmap to select which frame must be processed next. In addition, the user
is also required to determine the initial address in which the selected frame is stored
and he must access the internal bitmap in the driver directly, to mark the buffers as
idle whenever the processing of their frames is finished. Finally, the frame grabber
is stalled whenever the number of busy buffers exceeds a certain maximum limit and
the continuous capture is resumed whenever the number of busy buffers drops below
a certain minimum limit. Unless our interface is used, it is also up to the user to
determine these limits properly and to set them by modifying certain internal data
structures of the driver.

Thus, one of the main sources of complexity in the usage of the original driver is that

the user must write a completely different program, depending on which of these modes
is desired. So, one of the main goals of our interface is to make the existence of these
multiple modes transparent to the applications. Assuming that the initialization of many
applications takes a time much longer than the average time needed to process an ordinary
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frame, the interface always grabs the first image using the Single-Frame Capture mode.
Then we give the user a choice of any of the two Multiple-Frame Capture modes for the
real-time image processing loop. This choice is performed by inserting a single line with
the keyword Uselnterrupts followed by either On (Synchronous mode) or Off (Asynchronous
mode), in the configuration file. If no line beginning with Uselnterrupts is found, then the
default option (DEFAULT_USE_INTERRUPTS) defined in the header file grabber.h is used.

If the user selects the Synchronous mode, then there is also the issue of how to se-
lect the next frame to be processed, in case there are multiple buffers available. Cur-
rently we offer two policies: process the frames in First In First Out order (FIFO) or use
the Most Recently digitized Frame only (MRF) at any step and ignore all the old frames. In
order to express this option, the user must insert a line in the configuration file containing
the keyword RetrievePolicy followed by either FIFO or MRF. If no such line is present in the
configuration file, then the default option, DEFAULT_POLICY (also defined in grabber.h) is
used.

The FIFO policy is especially appropriate for real-time applications whose handling
routines execution times have a relatively large variance, but still have an average inferior to
the digitization period. In these cases, the use of the FIFO policy will allow eventual delays
introduced by exceptionally slow executions of the handling routines to be compensated
with the extra time not used when these routines can be executed relatively fast. This
way, the application will be able to service all the incoming frames in a timely fashion,
even if some of them take more time than the digitization period. However, if the average
execution time of the handling routines is bigger than the digitization period, this policy
will introduce bigger and bigger time lags until all the available buffers for incoming frames
get filled with images awaiting service. In this extreme event, the frame grabber will be
stalled and no further frames will be digitized until the user can service at least one of
the pending images. So, in the cases in which the average execution time is bigger than
the digitization rate (typically, non-real-time applications), the best option is to use MRF,
which will discard incoming frames more frequently, but will guarantee that a delay bigger
than the digitization period never occurs between the instant in which a (non—discarded)
frame is grabbed and the instant in which it is processed.

Grabber Output Geometry

Another complex aspect in the usage of the frame grabber’s driver is the proper selection
of the geometry of the output generated by the grabber, which consists of the number of
rows and columns in each frame, the number of buffers in the preallocated memory and the
format used to represent each pixel. If the Matrox Meteor driver version 1.4 is used alone,
then the user must make sure that there is enough preallocated memory to fit the selection
of output geometry plus the internal data structures of the driver. Furthermore, the user
must also respect other restrictions, such as the fact that with NTSC signal the number of
rows and columns must be a multiple of thirty and forty, respectively, and the fact that the
number of buffers must be at least three if the Synchronous Multiple-Frame Capture mode
is selected.
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On the other hand, if our interface is used, all these constraints are managed automat-
ically. Initially, the user selects a desired image size (rows and columns) and pixel format.
In order to set the number of rows in the image, the configuration file must contain a line
starting with the keyword ImageRows, followed by an integer number. Similarly, in order
to set the number of image columns, the keyword is ImageCols. If any (or both) of these
keywords is not present, then the default values DEFAULT_ROWS and DEFAULT_COLS,

defined in grabber.h, are used.

The pixel format is defined with the keyword OutputFormat, followed by one of the follow-
ing four options: Rgb24Bits, Rgb15Bits, 422Yuv16BitsPacked or 422Yuv16BitsPlanar. Unfor-
tunately, the exact meaning of each of these formats (with the exception of 422Yuv16BitsPlanar)
seems to depend on hardware and software details such as model of the Meteor board and
version of the Linux kernel. The difficulty is that, depending on these factors, the driver may
use either a little endian encoding (in which the first byte of a word is the most significant),
or a big endian encoding (in which the last byte of a word is the most significant). If you
are a URCS user, then you can build your applications assuming that big endian is used.
Otherwise, if you don’t know which encoding is used by the driver installed in your machine,
you can verify this by placing a (light) red pattern in front a color camera connected to the
input of the frame grabber and then performing the capture with the Rgb24Bits format. Di-
vide each resulting digitized image into four-byte words. If the average value of the second
byte on each word is greater than the average value of the third byte on each word, then
the encoding is little endian, otherwise the encoding is big endian. Having this in mind, the
different output formats available can be described as follows:

e Rgb24Bits: This is a four-byte—per-pixel format. Each frame is an array with 4 x
ImageRows x ImageCols bytes, where the word composed by bytes 47 to 4i + 3 is used
to represent pixel 1. For each such four-byte word, the second, third and fourth most
significant bytes represent the intensities of the red, green and blue bands, respectively.
The most significant byte is always meaningless.

e Rgb15Bits: This is a two-byte—per-pixel format. Each frame is an array with 2 x
ImageRows x ImageCols bytes, where the word composed by bytes 2 and 2: 41 is used
to represent pixel . The intensities of red, green and blue are encoded with 5 bits
each. The most significant bit of each 2-byte word is meaningless, the next five most
significant bits encode the intensity of red, the following five bits encode the intensity
of green and the five least significant bits encode the intensity of blue.

e 422Yuv16BitsPacked: This is a four—byte-per—pair—of-pixels format. Each frame is an
array with 2 x ImageRows x ImageCols bytes. In this format, the word composed by
bytes 47 to 4i 4+ 3 is used to represent pixels 27 and 2¢ + 1. Within each such word,
the most significant byte encodes the U components of the two pixels, the second
most significant byte encodes the intensity (Y component) of pixel 2i, the third most
significant byte encodes the V components of the two pixels and the least significant
byte encodes the intensity of pixel 2i+1. So, for each pixel, the intensity is represented
with 8 bits and the U and V components are represented with only 4 bits each.

e 422Yuv16BitsPlanar: This is a two—byte—per-pixel format, also with 8 bits for intensity
and 4 bits for each of U and V. However, each frame is divided into five independent
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arrays, laid in consecutive memory chunks: the first array has ImageRows x ImageCols
bytes and encodes the intensity levels, so that the i—th pixel is represented by the
byte i; the following four arrays have (ImageRows x ImageCols) / 4 bytes each and
encode the U components of the even field, the V components of the even field, the U
components of the odd field and the V components of the odd field, in this order. The
main advantages of this format are that it is the only one whose meaning does not
depend on the endian encoding, and that the intensity levels can be extracted directly
if the incoming images are to be treated as being monochromatic.

After the geometry options described so far are read from the configuration file, our
interface checks whether the numbers of rows and columns agree with the maximum and
minimum limits allowed, expressed in the constants MAX_IMG_ROWS, MAX_IMG_COLS,
MIN_ROW_INCREM and MIN_COL_INCREM (in grabber.h). Whenever these constraints are
violated, the numbers of rows and columns are set to be equal to the appropriate limits
and warnings tell the user that the initial selection was not feasible. Then, the interface
makes sure that the number of rows and columns are multiples of MIN_ROW_INCREM and
MIN_COL_INCREM, respectively. In case a violation is verified, each improper value is
truncated down to the closest feasible value and a warning is printed. Finally, the interface
allocates as many buffers as possible with the resulting geometry. If the resulting number of
buffers is smaller than the minimum limit required by the selected capture mode, then the
frame format (rows and columns) is scaled down in an approximately uniform way across
the two dimensions (subject to the restrictions on the allowed values) until the amount of
memory required by the resulting geometry with a minimum number of buffers is smaller
than the amount of memory reserved for the frame grabber. Again, a warning is printed to
make the user aware of the required resizing.

Grabber Input Source

The Matrox Meteor board has four Composite Video (CV) input channels and one S-Video
input. If you are a URCS user, the CV inputs numbered zero to three correspond to the
red, green, blue and black wires (in this order) in the cable plugged to the Meteor board
of firestone. To select one of these input sources, the user must insert a line starting with
the keyword InputSource, followed by either Camera0 or Cameral or Camera2 or Camera3 or
Rgb or Svideo. The first four options will result in the digitization of one of the four CV
channels, which may contain either a monochromatic signal or a composite polychromatic
signal. Another possibility is to treat the first three input sources as the red, green and blue
bands of a RGB signal by using the Rgb option. Notice that in this case, three independent
monochromatic signals obtained by three different cameras can be used. Then, if either
Rgbh24Bits or Rgb15Bits is used as the output format, the Matrox Meteor board will actually
digitize stereo images (it is probably necessary to use the same Synch signal in all the
cameras too). Finally, the Svideo option grabs images from the S—Video input. If no
InputSource option is found in the configuration file, then a default option defined by the
constant DEFAULT_INPUT_SOURCE (file grabber.h) is used.
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Frame Acquisition Frequency

Another useful feature of the driver that our interface kept is the ability to change the fre-
quency in which new frames are digitized by the meteor board. This can be accomplished
simply by inserting a line in the configuration file with the keyword FramesPerSecond, fol-
lowed by an integer not smaller than one and not bigger than thirty, which is interpreted

as the desired frame rate, in Hertz. The default frame rate is defined by the constant
DEFAULT_FPS (file grabber.h).

7.5 Interacting with the Frame Grabber

So far, we have described how to set all the configuration options available before the execu-
tion of the intended application begins. But in many cases, it is interesting to monitor the
performance of the system periodically and modify the configuration of the frame grabber
on—the—fly, in order to adapt to changing conditions either in the computational environ-
ment (for instance, CPU load peaks) or in the real world (for instance, the occurrence of
multiple targets in the visual field, in the context of tracking).

As we mentioned in the previous section the choice of an ideal retrieval policy for the
Synchronous Multiple-Frame Capture mode, for instance, depends on whether the average
execution time of the frame-arrival handling routines is smaller than the frame grabbing
period. So, the user might want to keep an estimate of this average time and then modify
either the retrieval policy or the frame acquisition frequency accordingly. In the next sub-
section we describe the support that our interface provides for performance monitoring and
in the following subsection we describe how to change the frame grabber configuration in
real time, as required by the specific needs of the application at hand.

Using the Instrumentation Data

The instrumentation data collected by the interface upon the arrival of each new input frame
can be viewed by the user through the global variable state, defined in the file grabber.h.
This struct is supposed to be a read—only variable (like geo) and we strongly recommend
(but not really require) that the users do not modify it in any way. Its most important
field, which is called thisArrivedAt is a time stamp corresponding to the moment when the
frame currently being serviced was received by the interface. In order to check the average
delay between the reception of a frame and the invocation of its handling routine, the user
can call the function local_time (also declared in grabber.h) in the beginning of the handling
routine. The difference between the value returned by this routine and the value stored in
state.thisArrivedAt will be equal to the delay before the processing of the current frame was
initiated. If this delay remains bigger than the digitization frequency for several frames, this
can mean that the application is not able to catch up with the frequency of the digitizer and
some appropriate action (such as reducing the frequency or changing the policy to MRF) is
needed.

Other fields of great interest in the variable state are the counters frameNum, totalReceived
and totalQueueFull. The first two represent the number of frames completely processed so
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far and the total number of frames received by the interface, respectively. So, if the differ-
ence between these two counters increases suddenly, this is an indication that either several
frames were discarded or several frames were queued in the interface, creating a big time
lag in the processing. In either case, some appropriate action must be taken. The counter
totalQueueFull indicates the total number of times that the pool of buffers reserved for in-
coming frames became completely full, causing the frame grabber to stall. If this counter
increases between two successive invocations of a user—defined handling routine which is
supposed to run in real time, then some action must be taken immediately in order to in-
crease the bandwidth of the system (for instance a reduction of the resolution of the images
through a frame resizing). This will never happen if the MRF policy is being used, because
new incoming old frames awaiting servicing will be immediately discarded upon arrival of
new frames.

Finally, the interface also provides a rough categorization of the total time elapsed so far.
This time is divided in three classes: the busyTime, spent in the execution of user—defined
routines; the idleTime, in which the CPU was not used at all; and the ovhdTime, spent in
the execution of the interface itself. A predominance of idleTime in general indicates that
some processing capacity is being wasted and it may be a good idea to increase either the
resolution or the digitization frequency (if possible). Notice that this will never happen if
the Asynchronous capture mode is being used, because in this case the frequency of the
capture—and—process cycle will be as high as possible.

Changing the Grabber Configuration During Execution

In order to change the configuration of the frame grabber in real time, the user must use
two global variables declared in the file grabber.h: grabberAction and gActPars. The former
is used to encode one or more commands to be performed by the grabber and the latter is
used to pass the parameters of these commands. Because certain configuration changes in
the frame grabber imply the deallocation of the frames currently stored in memory, the com-
mands issued by the user do not take effect until the current handling routine invocation is
over. After that, the commands are processed as soon as a new frame arrival interrupt is is-
sued by the meteor device and no other handling routine invocation is performed meanwhile
(even if there are old frames queued).

As shown in the file grabber.h, in the current version of the interface, there are six dif-
ferent commands available, each one encoded by a constant with the prefix G_.ACT_. Each
command (with exception of G_CACT_CH_MODE, which just flips back and forth between the
two capture modes), requires appropriate fields of the variable gActPars to be set in advance.
For instance, the command G_ACT_CH_SRC, which changes the geometry of the incoming
frames, requires gActPars.rows to be set to the desired number of rows, gActPars.columns
to be set to the desired number of columns and gActPars.oformat to be set to the de-
sired pixel format, as explained in Section 7.4. Similarly, the commands G_ACT_CH_SRC,
G_ACT_CH_POLICY and G_ACT_FPS require, respectively, the fields source, policy and fps
to be set to appropriate values.

Since each of these commands is represented by a separate bit in the encoding space,
the user can issue multiple commands at the same time by concatenating them with the |
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(binary or) operator. For instance, suppose that the user wants to change the input source
to the CV input number one and divide the current number of rows and columns by two at
the same time. This can be accomplished by inserting the following segment of code in the
application:

gActPars.source = METEOR_INPUT_DEV1;
gActPars.rows = geo.rows / 2;
gActPars.columns = geo.columns / 2;
grabberAction = G_ACT_CH_SRC | G_ACT_CH_GEO;

Since it is not always possible to execute the user commands exactly as issued (due to
restrictions in the possible values of the parameters, as explained in the previous section),
the interface sets the fields of gActPars to their actual current values upon completion of
any command. It also resets grabberAction to the default value G_ACT_NONE, to avoid that
a same command is accidentally repeated over and over. However, we strongly discourage
the users from employing the values stored in gActPars to infer anything about the current
frame being handled. In particular, the number of rows and columns of the current frame
must be always obtained from the global variable geo, as explained in Section 7.3, and never
from gActPars, especially in applications with X-Windows user interfaces. The reason for
this is that, in our intended programming model, the event handlers in a X-Windows user
interface directly set the variables gActPars and grabberAction in response to events such as
the resizing of a display window. But due to the reasons explained above, these actions do
not take effect from the point of view of the grabber until the next frame—arrival interrupt
is generated. So, accessing the current image based on the values stored in gActPars can
cause segmentation faults (in case a display window is resized to a bigger size, for instance).

A last word must be said about the special command G_.ACT_STOP. As we mentioned
in Section 7.3, the imgProcLoop routine, which is the basis for the development of user
applications, consists of a loop that continues forever unless the user explicitly takes some
action to stop it. Omne possible such action is to press (Control-C), generating a keyboard
interrupt that results in the termination of the application and the exhibition of some general
performance statistics (if DEFAULT_VERBOSE is set to 1 in the grabber.h file). However,
in many cases, the user wants a given application to execute only for a certain predefined
number of frames, or more generally, only until a certain predefined condition that can be
verified automatically in execution time is met. For this reason, we provide the command
G_ACT_STOP. This command results in the immediate interruption of the current call to
imgProcLoop, as soon as the current user—defined handling routine is finished. By default,
G_ACT_STOP deallocates all the internal data structures needed by the interface, closes
the Meteor device, and prevents any further calls to imgProcLoop from having any effect
(they will just return 0, while the usual return value is 1). However, if the application
potentially needs to perform additional calls to imgProcLoop, the user can set gActPars.halt
to 0. This will stop the continuous capture, as usual, but will keep the Meteor device
allocated exclusively to the user, allowing future calls to imgProcLoop. For safety reasons,
gActPars.halt is reset to 1 at every iteration. In any case, the user is advised to have
gActPars.halt set to 1 when the last GCACT_STOP command is issued by the application.

A good example of the programming paradigm presented in this section can be found
in the file autoresize.c, which is located in the directory INTERF_ROOT /examples/src.
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8 A Visual Servoing Application: Chair-Following

8.1 Introduction

One of the main obstacles to the practical feasibility of many computer vision techniques has
been the necessity of using expensive specialized hardware for low—level image processing, in
order to achieve real-time performance. However, gradual improvements in the architectural
design and in the manufacturing technology of general-purpose microprocessors have made
their usage for low—level vision more and more attractive. In this report, we demonstrate
the real-time feasibility of a tracking system for smart vehicle convoying, implemented
entirely on a dual Pentium processor. The task at hand consists of enabling an autonomous
mobile robot with a camera to follow a target placed on the posterior part of another mobile
platform controlled manually.

The key ideas used to achieve efficiency are quite traditional concepts in computer vision.
In the low—level image processing front, we use multi-resolution techniques to allow the
system to locate quickly the regions of interest on each scene and then to focus its attention
exclusively on them, in order to obtain accurate geometrical information at relatively low
computational cost. In the higher—level processes of geometrical analysis and tracking, the
key idea is to use as much information available a priori about the target as possible, in order
to develop routines that combine maximum efficiency with high precision, provided that its
specialized geometry and dynamics assumptions are met. One serial connection between
the vision computer and the wheelchair’s microcontroller supports five logical streams of
data for control purposes.

So, while we do introduce some novel formulations, especially in the context of geomet-
rical analysis of the scenes, the main goal of the present work is clearly to demonstrate
that by carefully putting together several well-established concepts and techniques in the
area of Computer Vision, it is possible to tackle the challenging problem of smart vehicle
convoying with low—cost equipment.

In Section 8.2, we discuss some of the related work in the areas of tracking and pose
estimation. In Section 8.3 we discuss our approach for recovering three-dimensional infor-
mation and exploiting the temporal coherence of sequences of images. In Section 8.4 we
discuss the aspects related to the problem of low level image processing: how to extract
and correctly identify useful features in the input images. In Section 8.5 we present our
approach to deal with the problem of visual control, that is, how to control the speed and
steering of the trailing robot so that it will not loose track of the leading mobile platform.
Section 1 briefly describes the hardware, and Section 2 describes the serial protocol.

8.2 Background

The task of tracking a single target can be divided in two parts: acquisition and tracking
proper (below, simply tracking) [9]. Acquisition involves the identification and localization
(possibly via motion detection and segmentation) of the target, as well as a rough initial
estimation of its pose (position and orientation), velocities and possibly some other state—
variables of interest. This phase is in some aspects quite similar to the problem of object
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recognition. Usually, generality is more important at this point than in the subsequent
tracking phase, because in several practical applications, many different targets of interest
may appear in the field-of-view of the tracking system and thus it is not possible to use
techniques that work only for one particular type of target.

The information obtained in the acquisition phase is then used to initiate the tracking
phase, in which the target’s state—variables are refined and updated at a relatively high
frequency. In this report we argue that in this phase, after the target has been identified
and its initial state has been properly initialized, all the specific information available about
its geometry and dynamics should be exploited in the development of specialized routines
that are appropriate for real-time usage and, still, require only inexpensive general-purpose
hardware.

As suggested by Donald Gennery [9], the tracking phase, which is the major problem
studied here, can be divided into four major subtasks:

1. Prediction: Given a multi-valued time-series with the history of (noisy) measure-
ments of the target state—variables performed so far, it is necessary to predict the
values of these variables in the next sampling instant, so that the tracking system can
always restrict its search for the target to a relatively small part of the scene. Tradi-
tionally, this extrapolation of the values of the state—variables is done recursively, for
efficiency reasons. In other words, at any point in time, the tracker keeps only a vector
of current estimates for the ¢rue (as opposed to measured) values of the state-variables
and some of the higher-order moments of the multi-valued time-series (typically the
covariance matrix). Then, given the new measurements, all these variables are ex-
trapolated for some future instant and the whole process can be repeated as soon as
the another set of measurements is available.

2. Projection: Then, given the predicted pose of the target and a certain model for
the 3-D-to—2-D transformation performed by the camera, it is necessary to determine
the appearance of the target in the scene. Typically, this task is formulated as the
determination of positions, orientations or apparent angles, and the visibility analysis,
for a set of distinctive target features.

3. Measurement: The next step is to search for the expected visible features in the
image. The problem of identifying which image features correspond to each model
features, known as the correspondence problem, is the hardest aspect of this task.
However, this problem can be avoided (or at least ameliorated) if the features are
distinctive enough to be uniquely distinguished regardless of the pose of the target (via
color information, for instance). Another useful trick is to make the other three steps
of the tracking phase tolerant to false matches in the solution of the correspondence
problem, via the use of robust statistics.

4. Back-projection: Finally, it is necessary to compute the discrepancy between the
actual image measurements and the image measurements that would be expected
given the analysis performed in the Projection step. Of course, it is also necessary to
determine how this discrepancy affects the current estimate for the state of the target.
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Ultimately, some sort of back-projection from the 2-D image plane to the 3-D scene
space is needed to perform this task.

In our tracking system, one of the steps in which we exploit most heavily the availability
of a priori information about the target in order to improve efficiency and accuracy is Back-
projection. More specifically, at this point (as well as in the Projection step) we make use of
the fact that our target is a rigid object composed by points whose relative 3-D positions are
known a priori. The problem of recovering the pose of a three-dimensional object from a
single monocular image, given a geometrical model for this object, has been heavily studied
in the last two decades or so. The solutions proposed in the literature can be classified,
according to the nature of the imaging models and mathematical techniques employed, as:
analytical perspective, affine and numerical perspective.

The general idea of the analytical solutions is to work with a fixed number of known
correspondences between model and image features. Then, they express image properties
such as feature positions [10; 13; 1; 8; 17], orientations [7; 23] or apparent angles [33; 28; 22]
as a function of a predefined set of pose parameters. By matching the resulting expressions
against the corresponding actual image measurements, one can derive a set of polynomial
equations involving the pose parameters. Finally, if the number of correspondences is big
enough, these equations can be combined algebraically, yielding the desired pose.

The problem with this approach is that, if the imaging process is modeled as a per-
spective transformation, then the equations that relate the image measurements to the
three-dimensional geometrical information known a priori are non-linear. Because of this,
all the solutions cited above work only for up to four features and can not be efficiently
extended to deal with more complex geometrical shapes. Furthermore, it is known that any
analytical solution based on fewer than six point correspondences is necessarily ambiguous
[8], yielding multiple plausible answers for certain problem instances. In addition, due to
the use of multiple non-linear constraints, most of the techniques mentioned above rely
on finding the roots of polynomial equations with degree higher than four. Unfortunately,
there is provably no closed—form solution for this problem itself. Finally, many of these
techniques have very poor error propagation properties. In a survey performed by Haralick
and Lee [10], all the techniques tested were found to produce large errors (at least 0.1%
in the actual 3-D positions of the object features,) just as a result of the propagation of
rounding errors with single precision arithmetic. Of course, this problem becomes much
more serious if we take into account the effect of quantization noise in the imaging process,
for instance.

So, the source of most of these problems is the intrinsic non—linearity of the geometrical
constraints that arise when the imaging process is modeled as a perspective transformation.
Under certain special conditions, an imaging transformation that is actually perspective (or
even more complex, if we take into account lens distortion, for instance), can be reasonably
approximated with much simpler models. Techniques based on linearized camera models [2;
15; 14] are also simple, efficient, and, contrary to the analytical solutions, they work for
scenes with arbitrarily many features. However, they are not able to cope with significant
perspective distortion and, unfortunately, since we use a camera with a relatively wide
field—of—view to avoid losing track of the target in our application, we have to face this type
of complication.
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So, an ideal pose recovery algorithm should combine the generality of a perspective
camera model with the robustness of the schemes based on affine approximations. Indeed,
it is possible to satisfy this requirement in practice by casting the problem of pose estimation
into an equivalent multivariate numerical parameter estimation problem. There are at least
two distinct ways in which this can be done.

The most traditional, straightforward, and widely used numeric approach consists of
defining a measure of the discrepancy between the actual image measurements and the
measurements that would be expected given a perspective camera model and an arbitrary
estimate for the unknown pose. Then, by replacing the chosen error measure (which is a
non-linear function of the pose parameters) with a local linear approximation around the
point corresponding to the current pose estimate, one can compute a correction that in
general yields a better pose estimate. This process can be iterated until (ideally) the error
function is locally minimized and the current pose estimate converges to the actual pose,
within a predefined desired precision.

David Lowe [21; 20; 19] proposed a classic solution along this line. Given a certain
pose estimate, his algorithm computes the expected values for a vector of measurements
(positions or orientations) in the resulting image, using a non-linear projective model.
Then, Newton’s iterative gradient method is employed to minimize this error vector in a
least—squares sense. Lowe’s algorithm was later improved by other researchers through the
use of more accurate projective models [3; 32; 16] and optimization techniques with better
convergence properties [26]. Similar solutions were also proposed for the specific case of
independent orientation recovery from line correspondences [26; 18; 34].

A more recent approach, suggested by DeMenthon and Davis [6], consists of computing
an initial estimate for the pose with a weak perspective camera model and then refining
this model numerically, in order to account for the perspective effects in the image. The
key idea is to isolate the non-linearity of the perspective projection equations with a set
of parameters that explicitly quantify the degree of perspective distortion in different parts
of the scene. By artificially setting these parameters to zero, one can then generate an
affine estimate for the pose. Then, the resulting pose parameters can be used to estimate
the distortion parameters and this process can be iterated until the resulting camera model
(presumably) converges to full perspective. Oberkampf et al [24] extend DeMenthon—Davis’s
original algorithm to deal with planar objects (the original formulation is not able to handle
that particular case) and Horaud et al [12] propose a similar approach that starts with a
paraperspective rather than a weak perspective camera model.

The main advantage of this kind of approach is its efficiency. Like the optimization—
based techniques, each iteration of the algorithms based on initial affine approximations
demands the resolution of a possibly over-constrained system of linear equations. However,
in the latter methods, the coefficient matrix of this system depends only on the scene
model and thus its (pseudo) inverse can be computed off-line, while the optimization—based
techniques must necessarily perform this expensive operation at every single iteration. [6].

However, all the solutions mentioned so far are much more general than the application
that we have in mind, namely: track and follow a target placed on the posterior position
of a non—holonomic vehicle whose motion is roughly constrained to a plane perpendicular
to the image plane of the (single) camera used. Most of the model-based pose recovery
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algorithms available in the literature do not impose any restriction on the possible motions
of the target and thus use camera models with at least six degrees of freedom, such as the
perspective, the weak perspective and the paraperspective models.

Wiles and Brady [31] propose some simpler camera models for the important problem of
smart vehicle convoying on highways. In their analysis, they assume that a camera rigidly
attached to a certain trailing vehicle is used to estimate the structure of a leading vehicle,
in such a way that the paths traversed by these two vehicles are composed exclusively by a
series of translations and rotations parallel to a unique “ground plane”. In spite of the focus
of their research being the recovery of structure from motion, many of their observations
and suggestions can be generalized to the analogous problem of pose estimation.

Clearly, the application—specific constraints reduce the number of DOF in the relative
pose of the leading vehicle to three. Because the camera does not undergo any rotation
about its optical axis, the x axis of the camera frame can be defined so as to be parallel
to the ground plane. Furthermore, the tilt angle between the camera’s optical axis and the
ground plane () is fixed and can be measured in advance. In this situation, the general
perspective camera can be specialized to a model called perspective Ground Plane Motion
(GPM) camera, whose eztrinsic parameter matriz is much simpler than that of a six-DOF
perspective model.

In our application we take this idea to an extreme. We not only simplify even more the
model proposed by Wiles and Brady with the assumption that the image plane is normal to
the ground plane (« = 0), but also use a specially engineered symmetrical pyramidal target,
in order to make the problem of inverting the perspective transformation performed by the
camera as simple as possible. In addition, inspired by the work of DeMenthon and Davis [6],
we adopt a solution based on the numerical refinement of an initial weak perspective pose
estimate, in order to obtain accuracy at low computational cost. But rather than starting
from scratch and iterating our numerical solution until it converges for each individual
frame, we interleave this numerical optimization with the recursive estimation of the time
series equivalent to the state of the target, as suggested by Donald Gennery [9]. So, only one
iteration of the numerical pose recovery is performed per frame and the temporal coherence
of the visual input stream is used in order to keep the errors in the estimates for the target
state down to an sufficiently precise level.

8.3 Tracking the Target with the Use of 3-D Information

To some extent all computer vision is “engineered” to remove irrelevant variation that is
difficult to deal with. Still, our engineering takes a fairly extreme form in that we track a
specially-constructed three-dimensional calibration object, or target, attached to the lead
robot. Our special target, placed on the back of the leading mobile robot, consists of two
planes parallel with respect to each other and orthogonal to the ground plane, kept in fixed
positions with respect to the mobile robot by a rigid rod, as shown in Fig. 15(a). The plane
closer to the center of the leading robot (typically further away from the camera) contains a
rectangle composed by four identical circles with a diameter of 4.0 inches each, so that two
of the virtual edges defined by these points are parallel to the ground plane, as shown in
Fig. 15(b). The other target plane (more distant from the leading robot) contains a unique
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Figure 15: Geometry of the target placed on the posterior part of the leading vehicle: (a)
top view; and (b) frontal view.

circle with a diameter of 3.5 inches. These two planes are arranged so that the orthogonal
projection of the this 3.5-inch circle on the plane closer to the leading robot lies on the axis
of vertical symmetry of the rectangle composed by the other four points (Fig. 15(b)).

From the point of view of our tracking algorithm, the state of this target is described with
respect to a coordinate system attached to the camera, whose x and y axes correspond to the
horizontal (rightward) and vertical (downward) directions on the image plane, respectively,
and whose z axis corresponds to the optical axis of the camera (forward). Due to the
ground—motion constraint, the target has only 3 DOF with respect to the camera. The
state—variables used to encode these DOF are: the distances between the camera’s optical
center and the centroid of the target’s rectangle along the x and z axes, denoted by ¢, and
t,, respectively, and the counterclockwise (as seen from the top) angle between the x axis
and the plane that contains the rectangle, denoted by 6.

At each step of the tracking phase, the tracker initially performs a a priori Prediction of
the state of the target, based uniquely on the history of the values for the state—variables.
More specifically, since our mobile robots can stop and turn quite sharply, we perform this
prediction with a simple velocity extrapolation for each state—variable, because under these
circumstances of a highly-maneuverable target and rather slow update rates, more complex
filtering is impractical and destabilizing. Let 4(9) and v() denote the estimated and measured
values for state—variable v at step ¢, respectively, where v is one of t,, t, and §. Then the
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| Circle IR
Top left —w/2 | =h/2 | 0
Top right +w/2 | =h/2 | 0
Bottom left | —w/2 | +h/2 | 0O
Bottom right | +w/2 | +h/2 | 0
Central 0 he -1

Table 7: Coordinates of the target centroids in the model reference frame. Here w denotes
the centroid—to—centroid horizontal width of the target’s rectangle, h denotes the centroid—
to—centroid vertical height of the target’s rectangle and [ denotes the orthogonal distance
between the two parallel planes that compose the target.

predictions performed by the tracker are:

Y
Agz') _ thi—l)_tgi—Q), (1)

) — 9p@-1) _ gi-2)

The predicted values for the state—variables are used to compute the appearances, on
the image plane, expected for the five circles that compose the target. This corresponds
to the Projection step, according to the outline presented in Section 8.2, and amounts to
projecting the known geometry of the target, according to our simplified perspective GPM
camera model. The model reference frame is defined so that its origin is the centroid of
the target’s rectangle, its y axis is aligned with the y axis of the camera frame and its
z axis, when placed at the origin, points in the opposite direction of the centroid of the
central circle. So, using the fact that the target has vertical symmetry, one can express the
coordinates of the circle centroids in this frame according to the Table 8.3.

According to our imaging model, the projection equation that yields the image coordi-
nates of an arbitrary point 4, [u;,v;]7, as a function of its coordinates on the model reference
frame, [z;,y;, 2], is:

[wi, vi, 1T = A Mint Mgt [%i, 3, 2,17 (2)

where the matrix of intrinsic camera parameters, My, (calibrated a priori) and the matrix
of extrinsic camera parameters, M., (estimated by the tracker) are given by:

[ fx 0 ug
Mint = 0 fy Vo 3 (3)
| 0 0 1
[ cos® 0 —sinf ty
0 1 0 hg
M. = N PO 4
eat sin@ 0 cosf t, )
. 0 0 0 1

These predicted appearances are then used in the Measurement phase, which corresponds
to the low level processing of the current input image, as we describe in the Section 8.4.
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Finally, the low—level image processing module returns the positions, measured in the image
plane, for the apparent centroids of the target circles, which are used in the Reprojection,
yielding the measured state of the target in the current step of the tracking phase. Let the
apparent centroids of the top left, top right, bottom left, bottom right and central circles be
denoted by [ug, vall, [, vir]t, [usr, vi]t, [Uer, ver]t and [ue,ve]?, respectively. In order to
simplify the derivation of the equations that yield the measured state—variables ¢, ¢, and
0, we define the image measurements mg, m, and my, as follows:

Upy + U + Upr + Uy

my = 1 — ug, (5)
m, = Upp — Uy -; Upp — 'U't'r, (6)
mg = Ue— UQ- (7)

By replacing the predicted state—variables in Egs. (2) to (4) with their measured counter-
parts and substituting the resulting expressions (as well as the centroid coordinates given in
Table 8.3) into Egs. (5) to (7), one can express the image measurements above as a function
of the state—variables:

B & (tw—wcose ty +w cos9> (8)
M = 7 t,—wsinf t,+wsinf/’
Jy ( h h )
Mz = 7 tz—wsin0+tz+w sin@/’ )
ty +1 sin9)
= - . 1
e Ja (tz—l cos § (10

In order to perform the Back-projection, we need to solve the system above for the
unknown pose parameters t,, t, and 6. A possible approach would be to try to combine these
equations analytically, but due to the nonlinearity of the camera model, this approach is
likely to result in a solution with ambiguity problems and poor error propagation properties.
Instead, we exploit the temporal coherence of the sequence of images through a numerical
algorithm that is iterated for successive input images, in order to recover precise values of
the pose parameters. We start with Eq. (9), since that is the only equation in the system
above that involves only two of the three unknowns: ¢, and 6. Instead of trying to solve for
both unknowns at the same time, we use the measured value of 6 from the previous step of
the tracking process in order to get the estimated value for ¢, at the current step:

) fyh ()’ + (2me w singG-D)?
B 2m, '

#(d

z

(11)

Now we solve Eq. (8) for the unknown ¢,. Of course, the resulting expression still
depends on both ¢, and #. The value of ¢, in the current tracking step has just been
computed according to Eq. (11) and can be used in the recovery of ;. But the value of 6
is still unknown in the current step and thus, it is obtained from the previous step:

, 2 ¢in2 gli—1) 2 gin Hli—1) (i—1)
_ Mg (t(z)— w* sin” 6 ) _ w”sin® cosd (12)

(1) —
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Finally, Eq. (10) can be solved directly for 6, after the values of ¢, and ¢, are both
known. Initially, we rewrite it as:

t t
sin9+£ cosf + fate - =
me myl l
Notice that this expression is on the form:
I Y

sinf +c; cosf@+c; =0, with: ¢ ,  Co .
meg mel l

So, we rename sin @ as a new variable and use the trigonometric identity cos § = v/1 — sin? @
to reduce the equation above to a quadratic form. By checking the two roots of the trans-
formed equation for consistency with the original form, we can determine a unique solution

for 0:
—cp—¢C \/02—c2+1
0:sin_1( 2 ! ! 2 .

2 +1

Substituting back the original expressions renamed as ¢; and ¢z and simplifying the resulting
equation, we obtain the final formula for 8:

0(1) .1 fz‘kQ_me V kl_k%
= s

k1

mgt?) — fp 1)

, where: ki = f24m%, ko= l

(13)

Egs. (11) to (13) allow one to perform pose recovery recursively, using the solution found
in the previous step as an initial guess for the unknown pose at the current step. However,
we still need an initial guess for 8 at the first time that Egs. (11) and (12) are to be used.
Our choice, in this case, is to set §(0) =0, reducing the equations mentioned above to:

i = Bt (14)
z
(1)
t
11 = m“:Tz (15)
x

Notice that this amounts to a weak perspective approximation, since § = 0 implies that
all the four vertices of the target rectangle that is used to recover ¢, and t, are at the
same depth with respect to the camera. So, in this sense, our pose recovery algorithm
is inspired in the scheme proposed by DeMenthon and Davis [6], because it starts with a
weak perspective approximation and then refines the projective model iteratively, in order
to recover a fully perspective pose. As we mentioned in Section 8.2, the basic differences
are that we use a much more specialized camera model, with only three DOF (as opposed
to six in DeMenthon—-Davis’s algorithm), and we embed the refinement of the projective
model in successive steps of the tracking phase, rather than starting all over from scratch
and iterating our algorithm until it converges for each frame. This is a way of exploiting the
temporal coherence of the input images to achieve relatively precise pose estimates at low
computational cost. Finally, one last difference between our work and DeMenthon—Dayvis’s
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Figure 16: Discrete Gaussian kernel used in the subsampling process; o = 0.8493 £ 0.0001.

method is that our initial solution is not completely affine, since the equation for 6 takes
into account the distortion caused by the fact that the central circle in the target is located
at a different plane than the other four circles. In fact the three-dimensionality of the target
is very important: For small variations of heading, the three-dimensional target exhibits
first order effects (proportional to the sine of the angle near zero) but a two-dimensional
target exhibits only second-order effects proportional to the cosine of the angle near zero.

8.4 Efficient Low Level Image Processing

The image acquisition is performed with a Matrox Meteor frame grabber. In order to achieve
maximum efficiency, this device is used in a mode that reads the images directly to the
memory physically addressed by the Pentium microprocessor, using multiple preallocated
buffers to store successive frames. This way, the digitized images can be processed directly
in the memory location where they are originally stored, while the following frames are
written to different locations.

The initial step of the low—level image processing is the construction of a multi-resolution
pyramid. In the current implementation, we start with digitized images of size 180 x
280. On each of the lower resolution levels, each image is obtained by convolving the
corresponding image in the immediately higher resolution level with a Gaussian kernel
and subsampling by a factor of two. This operation was implemented in a very careful
way, in order to guarantee the desired real-time feasibility. Instead of using some general
convolution routine that works with arbitrary kernels, we implemented a hand-optimized
function that convolves images with a specific 3 x 3 blurring kernel, corresponding to a
bivariate Gaussian distribution with standard deviation equal to 0.8493 + 0.0001, on both
axes. The use of a single predefined kernel eliminates the need to keep its elements either
in specially allocated registers or in memory, speeding up the critical inner loop of the
convolution. The criterion used in the choice of the particular kernel shown in Fig. 16 is the
fact that its elements are all powers of two, and thus it can be implemented with integer
additions only. With a careful subexpression factorization, the resulting convolution and
subsampling can be implemented with only 1.5 memory accesses with pointer increment,
2.25 integer additions, 0.25 pointer comparisons and 0.25 shift-right operations per element
of the original image, on average.

The next step is the segmentation of the target in the image. In order to obtain some
robustness with respect to variations in the illumination and in the background of the scene,
we use a target composed of black circles printed on white paper and perform a histogram
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Figure 17: Grey level histogram in a typical scene with the target at about 10 feet from the
camera.

analysis to determine an ideal threshold to binarize the monochromatic images grabbed by
the Matrox Meteor in the trailing robot, so that the black dots can be told apart from the
white paper. For efficiency purpose the grey—level frequency information needed to generate
the histograms is gathered on—thefly, during the subsampling process, at the extra cost of
1 memory accesses with pointer increment, per pixel.

A typical low-resolution grey-level histogram for an image grabbed in the environment
used in the tests, with the chair relatively far away from the camera (about 10 feet), is
shown in Fig. 17. It was verified that there is a satisfactory contrast between the black dots
(corresponding to the darkest end of the histogram) and the white paper (corresponding to a
peak of intermediate intensity), for a wide range of illumination conditions. Unfortunately,
it was also verified that in general there are many different parts of the scene background
that have roughly the same intensity than either one of these two parts of the target.

In order to determine the ideal thresholding point, we initially smooth the histogram,
by convolving it with an unidimensional discrete low—pass (average) filter with a kernel of
size eight. Then we scan the color histogram from the darkest to the lightest grey level,
looking for the first valley that appears after a peak, in order to try to separate the black
dots from anything else but a few black spots in the scene. A peak is defined as a grey level
that has frequency strictly higher than the following eight levels in the histogram, at least,
and a valley is defined as a grey level that is at least eight levels apart from the previous
peak and has frequency strictly lower than the following eight levels, at least. Actually, for
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improved efficiency, the smoothing is performed on—thefly, during the scanning process,
and it is interrupted as soon as the desired valley is found. This valley is then used as the
binarization threshold.

The next step is to detect and label all the connected regions of low intensity (according
to the selected threshold) in the image. This is done using the local blob coloring algorithm
described in Ballard and Brown [4]. Again, the criterion that determined the selection of
this technique was its efficiency, since it scans the entire input image just once, from the
left to the right and from the top to the bottom.

Initially, this algorithm is used to detect all the dark regions in a level of low resolution
in the pyramid. In this phase, in addition to labeling all the connected components in
the image, we also compute, on—the—fly, their bounding boxes, centroids and masses. The
dark regions detected in the image are compared against the appearances predicted for the
target’s black circles by the tracker that we describe in Section 8.3. For each predicted
appearance (converted to the appropriate level of resolution), we initially label as matching
candidates all the detected regions with similar mass and aspect ratio. Among these, the
detected region whose centroid is closest to the position predicted by the tracker is selected
as the final match for the corresponding circle in the target.

The selected bounding boxes are then converted to a level of high resolution, and the
blob coloring algorithm is used on each resulting window, in order to refine the precision of
the estimates for the centroid positions in the image. The resulting image positions are used
as inputs to the tracker, that recovers the 3-D pose of the target, predicts how this pose
will evolve over time, and then reprojects the 3-D predictions into the 2-D image plane, in
order to calculate new predicted appearances for the black dots, which are used on the next
step of the low level digital image processing.

8.5 Visual Control and Experimental Performance

In addition to tracking the leading robot in the field—of-view of the camera placed at the
trailing robot, the problem of smart convoying also requires the motion of the trailing robot
to be properly controlled, so that the target to be followed never disappears from its visual
field (or alternatively, it is reacquired whenever it disappears). In our system, this control
is based entirely on the 30 Hz error signal corresponding to the values recovered for ¢, and
t, (0 is used only in the prediction of the appearance of the target on the next frame).

We use a simple PID controller, whose proportional, integral and derivative gains are
developed empirically, in order to convert the ¢, and t, signals into steering angle and linear
speed commands for the robot. The goal of this controller is to keep ¢, equal to zero and ¢,
equal to a convenient predefined value (currently about 5 feet). Due to a limitation in the
throughput of the steering—speed command interpreter in our mobile robots, the ¢, signal
is subsampled to a 6 Hz rate and the ¢, signal is subsampled to a 3 Hz rate. The turning
angle and linear speed signals are then discretized to a -10 to 10 scale and passed down as
commands to the trailing robot, in such a way that the turn and speed commands are never
issued concurrently, at a single instant in time.

This first attempt at a controller that makes maximum use of a specially-engineered
tracking target performs rather well, in that it manages to keep the lead chair in view,
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keeps distance constant, and can reliably track turns of 30 to 45 degrees without losing
target features. The work is in early stages, however, and we have not performed extensive
testing or evaluation. In fact, the issue of basic controller design for this task is potentially
interesting. Our current controller assumes “off road” conditions: it is permissible always to
head directly at the lead vehicle, thus not necessarily following its path. The error metric
could simply be to keep the target centered in the field of view and correctly sized. If
vehicles must stay “on road”, then what is desired is that

sgct) = sl(t_d), (16)
where sy and s; are the state vectors of the follower and leader, respectively, and d is
some desired time delay. In words, the follower should re-trace the trajectory of the leader
precisely. The criterion that the following vehicle maintain a constant distance from the
lead vehicle and stay on its path can be disastrous since it could, for example, induce the
follower to take a sharp corner too fast to maintain distance with a leader who speeds up
once through the corner. Eq. (16) raises a number of interesting issues: state estimation
of the leader’s heading (local steering angle, say) as well as speed (or accelerations) are
ultimately needed, to be duplicated for local control. Vision becomes harder since the
follower cannot always aim itself at the leader. The desired trajectory is known, which
turns the problem into one that can perhaps more usefully be related to optimal control
than to simple feedback control.
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9 Conclusions

Several improvements and additions to the wheelchairs have turned them into flexible re-
search instruments. For instance, the improved odometry instrumentation allows a con-
troller that overcomes the notorious directional inaccuracies when the chair is commanded
to start moving in some direction when its three passive casters are in random orientations.
We are able to close a control loop for a convoying task using non-trivial computer vision
techniques. Our controller takes advantage of a special-purpose three-dimensional target
for which pose-estimation algorithms can be specialized. A serial link protocol supports
various abstractions of control, allowing various levels of open- and closed-loop paradigms.
Our current controller makes “off-road” assumptions, viz. that there are no constraints on
the follower’s path. On-road following strategies are easy to state but will require some
potentially interesting research.
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A Code Fragments for Wheelchair Dynamic Simulation

Below a typical use in perfly.c

{

float sin_head, cos_head;

PFCOPY_VEC3(ViewState->viewCoord.hpr, ViewState->prevCoord.hpr);
PFCOPY_VEC3(ViewState->viewCoord.xyz, ViewState->prevCoord.xyz) ;
your_favorite_car_dynamics(frame_time,

0.0f * ViewState->SteeringRate,

0.0f * ViewState->AccRate,

1.0f * ViewState->BrakeRate);
pfSinCos(ViewState->viewCoord.hpr[0] +90.0f, &sin_head, &cos_head);
ViewState->viewCoord.xyz[0] -= 0.1 * cos_head;
ViewState->viewCoord.xyz[1] -= 0.1 * sin_head;

PFCOPY_VEC3(ViewState->prevCoord.hpr, ViewState->viewCoord.hpr);
PFCOPY_VEC3(ViewState->prevCoord.xyz, ViewState->viewCoord.xyz) ;
addHeadGaze () ;

Where the car dynamix are doine like this:

#include "perfly.h"

#include "cardynamics.h"
#include "dynamics.h"

VAL L
struct
struct
static
static
static
static

local global variables ¥kkkkksikskkskkskikksikkskkokikkikkkkksk/
dynparams dparam;

initial_conditions initconds;

double eps=1.0e-4, *ystart, *last_y;

double t1,t2,dt, *dydx;

matrix_t yp;

double hmin;

/*********************************************************/

/***xxx global variables used by the bikedynamics.c **k¥**x/
float last_steering;
float steering;

float gas;

float brake;
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float delta_seconds;

extern Boolean STOPPED;

int badlast,nbad,nok;

/3K sk sk sk ke ok sk ok e ok sk ok s sk sk s sk sk ke sk sk sk sk s ok sk ok e sk sk sk ok s ok ke sk sk ok sk sk ke ok ok ok ok sk ok sk ok s sk ok ko /

void

update_kart_init ()

{
yp = mat_new(BUFFER_LENGTH, STATE_VARS+LEAD_VARS+1) ;
ystart = vector(1,NVARS);
last_y = vector(1,NVARS);
dydx = vector(1,NVARS);
init_parms (INIT_FILE); /* read and interpret the initialization file */
init_wchr(ystart); /* set car into initial state */
init_wchr(last_y); /* set car into initial state */
tl = 0.0;
t2 = delta_seconds;

b

void your_favorite_car_dynamics(float frame_time,
float str,
float gs,
float brk)

static int isInitial = 1;
float delta_dist=0, steer_angle;
static float distance=0;
float sin_head, cos_head;

steering = str;

gas = gs;

brake = brk;

delta_seconds = frame_time;

/* printf("steering %f gas %f brake %f\n", steering, gas, brake); */

if(isInitial)

{
update_kart_init () ;
isInitial = 0; /* for one time initialization */
toggleTexture();

}

rk2simple(ystart, NVARS, (double) tl1l, (double) t2, 1, whchr_derivs);
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/* printf("y1: %f, y2: %f, y3: %f, y4: 4f, y5:%hf, y6:%f, y7:%f\n", ystart[1],
ystart[2], ystart[3], ystart[4],
ystart[5], ystart[6], ystart[7]);

*/

if (steering != 0)
{
delta_dist = (float) (sqrt(ystart[1]*ystart[1] +
ystart [2] *ystart[2])) - distance;
if (delta_dist == 0.0)
steer_angle = 0.0;
else steer_angle = RAD2DEG(ystart[7]);

}
else
{
steer_angle = 0.0;
delta_dist = (float) (sqrt(ystart[1]*ystart[1] +
ystart [2] *ystart[2])) - distance;

/* Change the car’s viewstate */
/* ViewState->viewCoord.xyz[1] += ABS(delta_dist) ;*/

ViewState->viewCoord.hpr[0] += STOPPED == 0 ? steer_angle : 0.0f;
pfSinCos( ViewState->viewCoord.hpr[0] +90.0f, &sin_head, &cos_head);
ViewState->viewCoord.xyz[0] += delta_dist * cos_head;
ViewState->viewCoord.xyz[1] += delta_dist * sin_head;

/* update time deltas */
t1=t2;
t2=t2+delta_seconds;

/* update last_y */
distance = (float) (sqrt(ystart[1]*ystart[1] + ystart[2]*ystart[2]));

/* update the last steeing value */
last_steering = steering;

And the tough stuff is here, in the dynamics file...
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#include
#include
#include
#include
#include

VALIII L
#define
#define
#define
#define
Boolean
extern
extern
extern
extern
double
double
int

<stdio.h>
<math.h>
<cbtypes.h>
<cbmath.h>
"dynamics.h"

*x* globals/defines used in derivs Aookokokok Kok kKK kK kK kK kok /
ABS(x) (((x) > 0) ? (x) : -(x))

PI 3.14159265359

GRAVITY 9.81

RHO 1.23

STOPPED; /* for when the car is stopped */

float steering; /* kart steering value */
float last_steering; /* last kart steering value */
float gas; /* kart gas value */

float brake; /* kart brake value */

e0;

dxsav,step_scale;
debug, debugl;

/* definitions to make the code shorter */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

M dparam.M /*vehicle mass*/

J dparam.J /*body inertiax/

L dparam.L /*wheel basex/

j dparam. j /*wheel inertia*/

r dparam.r /*wheel radius*/

A dparam.A /*frontal areax/

CD dparam.CD /*drag coefficientx*/

nul dparam.nuTorque /*1linear vehicle friction*/

nu2 dparam.nuSteer /*for steering function (unused)x*/
nu dparam.friction /*1linear vehicle frictionx*/

tau dparam.qfriction /*for steering function (unused)*/
maxadot dparam.adot /*steering ratex/

amax dparam.amax /*maximum steering anglex/

VM dparam.VM /*maximum params vehicle speed*/
fraction dparam.gas /*braking on centripetal problems*/
brakes dparam.brake /*maximum braking acceleration*/
kappa dparam.dmatch /*maximum braking acceleration*/
motorV dparam.volts /*maximum braking accelerationx/
motorR dparam.resistance /*maximum braking acceleration*/
wref 4.0 /* max wheel speed for the wheelchair */
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/e ke ko ok ko o ko o sk o o sk ok ks ok ko o sk o ko o ko ok sk ok ko e o ko ko ks ok ko o sk o ko o sk o sk ok K ok o
* get_torque:

torque = m * r * (accel - brake) = I * (accel - brake)/r

Note: For stopping we need to apply negative torque.

Since most of us stop faster than we accelerate, there’s

a "scale" term for stopping. When the car is stopped there

is no torque and the STOPPED variable is set so that

the steering wheel rate won’t change. Also, the accel and

brake values are supplied by the go kart.

s sk s e e s ke ok ke sk sk e s s ke ok sk sk s se s s ke sk sk s s s ke ke sk sk s sk ke sk sk s s ke ok sk sk s ke ke sk sk sk s ke sk sk sk ke s ok /

* K X X X X ¥ * *

/* basic torque routine: no backup, acceleration proportional to grad Vq */

double get_torque(double y[]1)

{
double speed, torque = (VM*M * r * (gas - brake)), test;
static double maxacc -1, bsens = 2;

speed = rxy[6]/cos(y[7]1);

if ((speed <= 0) && (torque <= 0.0))
{

STOPPED = TRUE;

return(0.0);
}

/* initialize maximum allowable torque */
if (maxacc == -1)
maxacc=0.5*RHO*A*CD*r*VM*VMx*
(1.0+0.5*sin(speed*PI/VM)*sin(speed*PI/VM)) ;

if (maxacc<0.0)
maxacc=0.0;

/* Limiting conditions */
if( torque > maxacc )

torque = maxacc;

if (torque < ( test=-r*M*brakes )) /* brakes helps us stop faster */
torque = test * bsens;

/* Cannot back up, need to stop continuously */
if (torque < 0.0)
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torque *= H(speed,step_scale);
/* Take your foot off the gas if the centripetal force is too large */

if( (sin(y[7])*speed*speed/L) > (0.5*GRAVITY) )
torque = fraction*test;

if( (-sin(y[7])*speed*speed/L) < (-0.5*GRAVITY) )
torque = fraction*test;

STOPPED = FALSE;
return torque;

[/ skok ko ok ks ok ok sk ok ok sk s ok sk ok ok s s ok ks o sk sk ok sk sk sk sk s ok sk ok ok s s ok ks o sk s ke ok sk ok ok ok sk o
* get_steering:

When the kart steering rate is given to the model directly

the y position values of the kart will oscillate. For some

this effect appears to go away when the range of the

steering values is restricted. Note that when the steering
value goes from negative to positive (or vice versa) we must
add the values to get the steering difference.

s o ok ks o ok ks o ok ks o ok sk o ks ok ks s ok sk s ke s ok ks ook sk sk e ok sk sk s ok sk s ks sk ok ks ok ok sk sk o /

* ¥ X X X * *

double get_steering(double y[])
{

double delta_steer, sensitivity=1.0;

if (STOPPED) /* hold the wheel still when stopped */
return(0.0);
else if ((last_steering < 0) && (steering > 0))
delta_steer = (double) (ABS(steering) + ABS(last_steering));
else if((last_steering > 0) && (steering < 0))
delta_steer = -1%(double) (ABS(last_steering) + ABS(steering));
else
delta_steer

(double) (steering - last_steering);
/* A set of limiting conditions */
/* if ( delta_steer > maxadot )

delta_steer = maxadot;

if( delta_steer < -maxadot )
delta_steer = -maxadot;
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if(C ( y[7] >= amax ) && ( delta_steer > 0.0) )
delta_steer = 0.0;
else if ( ( y[7] <= -amax ) && ( delta_steer < 0.0) )
delta_steer = 0.0;

*/

return (delta_steer * sensitivity);

/* Might have to pass in real world position here */
void init_car(double y[])

{

y[1]l=initconds.
y[2]=initconds.
y[3]=initconds.
y[4]1=0.0;

y[51=0.0;

y[6]=initconds.
y[7]=initconds.
STOPPED = TRUE;

X5
ys
q;

ffdot;
a;

void init_wchr(double y[])

{
y[1]=initconds.
y[2]=initconds.
y[3]=initconds.
y[4]=initconds
y[5]=initconds.
y[61=0.0;
y[71=0.0;
STOPPED = TRUE;

X;
Ve
a;

Wl;

wr;

/*x positionx*/

/*y position*/

/*azimuth of pursuit vehiclex/
/*initial rear wheel orientationx*/
/*initial front wheel orientationx*/
/*front wheel rotation ratex/
/*steering anglex/

/* we are initially stopped */

/*x position*/

/*y position*/

/*azimuth of pursuit vehiclex/
/* 1ft wheel rotation rate */
/* rt wheel rotation rate */
/* initial torque rate */

/* initial steering rate */

/* we are initially stopped */

/*********************************************************

motorTorque: 4/24/96 :

C code for torque (motor friction deducted)

code segment calculates ideal torque given speed and resistance
s ks o ok o ok ok sk sk sk o o o ok ok sk sk s s o o ok sk sk s s o ok ok sk sk sk ok ok sk sk sk s ok sk sk sk sk ok o sk sk sk ok ok ok ok /

double motorTorque(double wheeln, double resistance, double V)

{

double i,T,n,gearing=1.0;
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n = gearing * wheeln;
i = (V - 0.6%n) / resistance;
T = 0.3%i/PI - 0.141;
return T;
b

void whchr_derivs(double t,double yin[], double dydx[])
{
double drag, *fq, speed;
int i;
double x, y, wr, wl, q;
double cq,sq;
double vsq;
double nurolling = 1.0, wroffset = 2.0;
/* note: wroffset is because the right wheel goes faster
than the left under normal conditions */

/* initialization of variables */
fq = vector(3,5);
for (i=3; i<=b5; i++) fq[il] = 0.0; /* zero out the torques */

x=yin[1];

y=yin[2];

gq=yin[3];

wl=yin[4];

wr=yin[5];

speed = 0.5 * r * (wl+wr);
vsq = speed * speed;
cg=cos(q);

sg=sin(q);

/* 1st half of car dynamics */

wl = get_torque(yin);

wr = wl + wroffset ;

fq[4] = motorTorque(wl / (2.0%PI),motorR,motorV);

fq[4] -= 0.5 * nurolling * M * GRAVITY * r * (wl/wref);
fq[5] = motorTorque(wr / (2.0%PI),motorR,motorV);

fq[5] -= 0.5 * nurolling * M * GRAVITY * r * (wr/wref);
yin[6] = fq[4] + fq[5];

yin[7] = get_steering(yin);
fq[4] -= 0.5 * yin[7];
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fq[5] += 0.5 * yin[7];
drag = 0.5 * CD * A * RHO * vsq; /* standard air drag term (unimportant for wheelchair

/* the following C code comes from maple */
dydx[1] = (wl/2 + wr/2) * r * cos(q);

dydx[2] = (wl/2 + wr/2) * r * sin(q);

dydx[3] = -r * (wl-wr);

dydx[4] = -r/(M*r*r+2.0%j) * drag * r/(2.0%J*r*r+j) *
fq[3] + (4.0%j+r*r*M+4.0xJ*xr*r)/(M*xr*r+2.0%j) /
(2.0*%Jxr*r+j) * £q[4]/2 + r*r*
(-M+4.0%J) / (Mxr*r+2.0%j) /(2.0%J*r*r+j) *
fq[51/2;

dydx[56] = -r/(M*r*r+2.0%j) * drag + r/(2.0%J*rxr+j) * f£q[3] +

rxr*x(-M + 4.0%J) / (M*xr*r+2.0%j) / (2.0%J*r*r+j) *
£ql[4]/2 + (4.0%j + r*xrxM +4.0%J*rxr) / (Mkrxr+2.0%j) /
(2.0*r*xr*M + 2.0xJxrxr + j) * fq[5]1/2;

void car_derivs(double t,double yin[], double dydx[])
{
double x,y,xdot,ydot,q,qdot,fr,frdot,ff,ffdot,a,adot;
double ca,sa,cq,sq;
double t1,t2,rhs,inertia,vsq;
double FD,Tfriction;
double d=0.5%L; /*location of center of mass*/

x=yin[1] ;y=yin[2];q=yin[3];fr=yin[4] ;ff=yin[5] ;ffdot=yin[6] ;a=yin[7];
ca=cos(a) ;sa=sin(a) ;cq=cos(q) ;sq=sin(q);
gdot=r/L*sax*ffdot;frdot=ca*ffdot;vsq=pow(r*frdot,2)+pow(d*qdot,2);
xdot=r*cq*frdot-d*sq*qdot ; ydot=r*sq*frdot+d*cq*qdot;

/* 1st half of car dynamics */

dydx[1] = xdot;
dydx[2] = ydot;
dydx[3] = qdot;
dydx[4] = frdot;
dydx[5] = ffdot;

FD=0.5*RHO*A*CD;
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inertia=j;
inertia+=(r/L)*(xr/L)*sa*sax*x(J+M*d*d) ;
inertia+=ca*cax* (j+M*r*r);

/* << here it is! change these two to ask the user and he can drive.
also need to change delta t up in nuexecutive.c >>*/

/*

Note that one could call these routines, and maybe should, outside
this inner loop, up in nuexecutive.c (q.v.).

a) it might take a long time to convert inputs,

I don’t know...if the numbers are living in some registers, then not.
b) they may not change very fast. */

rhs=get_torque(yin) ;/* Engine driving torque */

adot=get_steering(yin);/* Steering wheel rate */
if (debug)
printf("\n in derivs, robx,y, rhs (torque), steer:\n %f %f %f %f", x,y, rhs, ado

Tfriction=-dparam.friction*FD*r*r*VM*(1.0+ca*ca)*ffdot;

/* ’viscous’ frictionx/
t1=-FD*r*caxr*r*(caxca+(d/L)*(d/L) *saxsa)*ffdot*ffdot;

/* quadratic drag terms*/
t2=sa*cax* (j+M*r*r-(r/L) * (J+M*d*d) ) *ffdot*adot ;

/*steering drags*/

/* rhs+=Tfr(t,yin,u,v)+Tfriction+t1+t2; */ /* adds torque twice.*/
rhs +=Tfriction+t1+t2;
dydx[6] = rhs/inertia;

dydx[7] = adot;

return;
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B Data Sheets for Shaft Encoders and Electronics
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